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Abstract

This contribution presents a quantitative evaluation procedure for Information Retrieval
models and the results of this procedure applied on the enhanced Topic-based Vector
Space Model (eTVSM). Since the eTVSM is an ontology-based model, its effective-
ness heavily depends on the quality of the underlaying ontology. Therefore the model
has been tested with different ontologies to evaluate the impact of those ontologies
on the effectiveness of the eTVSM. On the highest level of abstraction, the following
results have been observed during our evaluation: First, the theoretically deduced state-
ment that the eTVSM has a similar effecitivity like the classic Vector Space Model if
a trivial ontology (every term is a concept and it is independet of any other concepts)
is used has been approved. Second, we were able to show that the effectiveness of the
eTVSM raises if an ontology is used which is only able to resolve synonyms. We were
able to derive such kind of ontology automatically from the WordNet ontology. Third,
we observed that more powerful ontologies automatically derived from the WordNet,
dramatically dropped the effectiveness of the eTVSM model even clearly below the
effectiveness level of the Vector Space Model. Fourth, we were able to show that
a manually created and optimized ontology is able to raise the effectiveness of the
eTVSM to a level which is clearly above the best effectiveness levels we have found in
the literature for the Latent Semantic Index model with compareable document sets.
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Chapter 1

Introduction

Information Retrieval deals with the following major challenge: given a set of docu-
ments and a query, Information Retrieval deals with finding a set of documents relevant
to the query. In many Information Retrival approaches a query itself is considered as a
(virtual) document. To simplify life even further, we consider only the content part of
a document—the plain text of natural language. Document markup or metadata is left
out. This is the task and the setup that a natural language Information Retrieval sys-
tem should normally deal with. The way the system does this work is expressed in the
Information Retrieval model. This model can incorporate algorithms from trivial word
occurrence frequency lookup, to an extensive statistical analysis or tracking of word
relations. However, at the end, this model should get evaluated upon the effectivness of
the returned results which itself is a non-algorithmic task. So, we have documents cre-
ated by humans, humans as the sources of information construct queries and humans
who at the end judge on the results. On the other hand, we want to derive a concrete
system that is capable of solving this problem systematically.

The goal of this work is, to contribute to the global knowledge of the solution
of Information Retrieval problem as it was presented before. To look for the new
ways to obtain more accurate results produced by the Information Retrieval models
on a large scale of use cases. To evaluate how semantic relations can be applied for
the tasks of this class and how introduction of semantics in Information Retrieval is
compared to former known statistical approaches. Another challenge is to check how
is it possible to tune results by changing model configuration, and finally: What degree
of configuration freedom does the model provide to a user?

The enhanced Topic-based Vector Space Model (eTVSM) was selected as the ob-
ject for study and evaluation. The eTVSM is an advanced Information Retrieval model
that integrates stemming and stopword removal and can represent most of the linguistic
phenomena. It provides a great deal of configuration freedom through considering on-
tology concepts and their relationships to encode linguistic phenomena. On the other
hand, the eTVSM model has a set of heuristic points in its end-configuration which
greatly influence model output. These points will be identified and their influence will
be studied. The main goal of the eTVSM model is to “understand” document content
to the level which is encoded in the ontology. A modeler goal is to understand how to
encode a domain ontology in an efficient way. Our goal is to optimize both of these
processes.

Finally, as the end point artifacts of this work we can see an implementation of
the eTVSM which will be used to perform evaluations. Afterwards, the evaluation

1



2 CHAPTER 1. INTRODUCTION

results and the comparisons to other models will be presented and grounded. As a side-
effect, we can identify some optimization approaches for model implementation as well
as model feasibility judgments for large scale databases retrieval and its adoptability
characteristics to a dynamic environment of document collection content on the one
hand and model configuration on the other.

The work reported here can be split into two parts. In the first part we present
theoretical bases required in order to perform eTVSM evaluations and comparisons.
While in the second part we actually present practical steps that were taken in order to
obtain evaluation results. We present you these evaluation results and justify on their
comparisons.

We will start this contribution by presenting Information Retrieval models that led
to the idea of creating eTVSM—the target Information Retrieval model of our evalu-
ations. Therefore, in chapter 2 you will find descriptions of the classic Vector Space
Model (VSM) and the Topic-based Vector Space Model (TVSM) along with some
terms and definitions that are common in Information Retrieval field and also in our
work. Chapter 3 is completely devoted to eTVSM. Here, you will find the description
of the ontology eTVSM operates upon, and approaches to its modeling. Also, we will
present formalism of obtaining eTVSM document models and document similarities.
Afterwards, in chapter 3, we will present heuristic assumptions incorporated in eTVSM
which might influence the results of our further evaluations. In chapter 4 we concen-
trate our attention on measurements that are commonly used to measure Information
Retrieval model effectiveness. These will be the measurements we will obtain for each
our model evaluation. Also, some basic ideas on these measurements comparisons and
their possible graphical representations in a form of plots are presented. In chapter 5 we
define an evaluation design for performing an evaluation of an Information Retrieval
system. Furthermore, we talk about existing test collections suitable for performing
evaluations. Following the description of the preparation phase, we describe our exper-
imental design. The analysis phase of the overall proposed evaluation design consists
of two presented approaches for models effectiveness comparisons, through statistical
aggregation of observed measurements, with an additional significance study. Chap-
ter 5 constitutes the theoretical part of our work.

Furthermore, in chapter 6 we present you with Themis—the Information Retrieval
framework which was developed in order to perform eTVSM evaluations. It includes
an eTVSM implementation and components required for the model configuration, car-
rying out evaluations and collecting and aggregating measurements. Chapter 7 then
presents evaluation results that were obtained for various eTVSM configurations. Ob-
tained results get compared with evaluations of other Information Retrieval models.
Finally, in chapter 8 we summarize our experience obtained in the course of this work
with conclusions.

This contribution is an extended and reworked version of the master thesis [46] of
Artem Polyvyanyy.



Chapter 2

Information Retrieval Models:
VSM and TVSM

This chapter provides a brief overview on the background of Information Retrieval,
the common terms and definitions used, as well as two selected models will be pre-
sented. The two presented models, Vector Space Model (VSM) and Topic-based Vector
Space Model (TVSM) are ancestors of the enhanced Topic-based Vector Space Model
(eTVSM) which will be studied in more detail in the remaining chapters of this con-
tribution. If you are familiar with Information Retrieval and the VSM as well as the
TVSM we recommend you to go directly to chapter 3 where we present the eTVSM in
detail.

2.1 Common Terms and Definitions
We will introduce several Information Retrieval models and we aim to present com-
mon terms and definitions for all these models. The model specific definitions will be
provided later, with corresponding Information Retrieval model descriptions.

Information Retrieval Model

A retrieval model specifies representations used for documents and queries, and how
they are compared [60]. An Information Retrieval model is a formalisation of the way
of thinking about Information Retrieval. Such formalism can be defined in form of
algorithms, mathematical formulas, etc. Formally, an Information Retrieval model is a
quadruple [D,Q,F,R (qi, dj)] [8] where:

• D, is a set of representations for the documents in the collection;

• Q, is a set of representations for the user information needs (queries);

• F , is a framework for modeling document representations, queries, and their
relationships;

• R (qi, dj), is a ranking function which associates a real number with a query
qi, (qi ∈ Q) and document representation dj , (dj ∈ D).

The ranking function is often called the similarity function, because of its semantic
aspect of expressing similarity between a document and a query.

3



4 CHAPTER 2. INFORMATION RETRIEVAL MODELS: VSM AND TVSM

Document Model

A document model is a formal document representation used by an Information Re-
trieval model to obtain document similarities.

Document Preprocessing

Document preprocessing is a stage before a document model construction, when data
is analyzed, transformed and filtered from the document content. This might include
stopword removal, stemming, etc.

Stopword Removal

The process of stopword removal deals with filtering out “non-content words” (usually
named as stopwords) from the document content, prior construction of the document
model. Stopwords are words like a, the, is, etc. So that, at the end, only the content
bearing words [51] get represented in the document model. One might track stopwords
by analyzing term frequencies. An alternative is the usage of predefined set of stop-
words called stop list, a list of words to be filtered out [51, 62]. In general, 40–50% of
the total number of words in a document are usually removed with the help of a stop
list [51].

Stemming

Stemming is a process of determining a stem form of a given inflected (or, sometimes,
derived) word form. Stemmer is a computer algorithm used for a purpose of stemming
[19, 30, 42]. The first ever published stemmer was written by Julie Beth Lovins in
1968 [40]. In July of 1980 Martin Porter has published his Porter stemmer [47]. Till
now, this algorithm is a de-facto standard algorithm for English language stemming.
Over the next few years, he extended his work by building Snowball [48], a framework
for writing stemming algorithms, and he implemented an improved English stemmer
together with stemmers for several other languages.

Information Retrieval Environment Formalization

Additionally to Information Retrieval model formalization we want to provide an In-
formation Retrieval environment formalism. These are common pieces that are used
by model framework to operate on documents and queries. Considering term as the
smallest information unit that is distinguishable by Information Retrieval model:

• T , is a set of terms which appear in D ∪Q;

• αd,t, is the occurence of the term t ∈ T in the document d ∈ D
αq,t, is the occurence of the term t ∈ T in the query q ∈ Q;

• ωd,t, is the weight of the term t ∈ T in the document d ∈ D
ωq,t, is the weight of the term t ∈ T in the query q ∈ Q.

2.2 Linguistic Phenomena
Natural language documents are more than just sequences of words. Complex word
relations exist between words. These relations are hidden in the word meanings on
the semantic level. Consideration of semantics can improve the quality of information
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search. A scientific field that encompasses the study of semantics is linguistics. In
this section, we present semantic word relations studied by linguistics. Considering
these relations should allow Information Retrieval models to operate with meaning and
word relations, rather than just operating with term occurrences. Looking at document
semantics is the core of the eTVSM.

Synonymy

Synonymy relation between two words exists if they are different words but have sim-
ilar or identical meanings and are interchangeable [33] in a specific context. Two syn-
onyms for example are car and automobile which usually are interchangeable in most
contexts.

Inflection

Inflection is the modification or marking of a word to reflect information, such as gen-
der, tense, number or person of a target word [59, 61]. An inflectional affix carries
certain grammatical restrictions with it. Thus walking, walks, walker have in common
the root walk and the affixes -ing, -s, and -er.

Composition

Composition is the word forming process where the resulting (formed) word consists of
more than one free morpheme. English language examples of composition are barefoot
and blackboard.

Derivation

Derivation is the process of creating new lexemes from other lexemes, e.g., by adding
a derivational affix. It is a kind of word formation. Derivational affixes usually apply
to words of one syntactic category and change them into words of another syntac-
tic category. E.g., the English derivational suffix -ly changes adjectives into adverbs
(quick → quickly).

Derivational affixes can also modify the meaning. E.g., the derivational prefix un-
applies to adjectives (do → undo). Derivation may occur without any change of form,
for example telephone (noun) and to telephone (verb). In such a case it is assumed that
null morpheme was affixed.

Hyponymy

According to [25, 28], hyponyms are a set of related words whose meaning are spe-
cific instances of a more general word (so, e.g., red, white, blue, etc., are hyponyms
of color). Hyponymy is thus the relationship between a general term and specific in-
stances of it. E.g., sedan as the instance of car.

Meronymy

Meronymy denotes a constituent part of, or a member of relation [14, 15]. That is,

X is a meronym of Y if Xs are parts of Ys, or
X is a meronym of Y if Xs are members of Ys.
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E.g., room as the part of an apartment as the part of a floor as the part of a build-
ing. A closely related concept is that of mereology [58], which specifically deals with
part/whole relations and is used in logic. It is formally expressed in terms of first-order
logic.

Homography

Homography is a precedent when two words have the same orthography but different
interpretations, e.g. mouse—rodent, and mouse—computer device.

Metonymy

Metonymy is the substitution of one word for another with which it is associated.
Metonymy refers to the use of a single characteristic to identify a more complex entity
[21, 23]. The following are clear, commonly used examples of metonymy: the press
for the news media, a dish for an entrée.

Word Groups

Sometimes a semantic meaning is encoded not in one separate word, but in a word
group, e.g. New York City—“the largest city in New York State and in the United
States”. Thus, a semantic unit consists of three separate words. Treating each word
separately will in most cases deliver a different semantic interpretation of the word
group. Assuming a notion of terms, a word group can be considered as a compound
term.

2.3 Vector Space Model
The Vector Space Model (VSM) or term vector model, is an algebraic model used
for Information Filtering, Information Retrieval, indexing and relevancy rankings. It
represents natural language documents in a formal manner by the use of vectors in
a multi-dimensional space which has only positive axis intercepts. It was used for
the first time by the SMART Information Retrieval system [13] which was developed
at Cornell University in the 1960s. The VSM formal operational procedure can be
divided into three stages. The first stage is document indexing. Here content bearing
terms are extracted. The second stage deals with weighting of indexed terms. Finally,
the third stage is responsible for calculating similarities between the input query and
indexed documents.

Document Indexing

Document indexing incorporates document preprocessing which in fact might include
stopword removal and, or stemming. Non-linguistic methods for indexing have also
been implemented. Probabilistic indexing is based on the assumption that there is some
statistical difference in the distribution of content bearing words, and stopwords [62].
Another indexing approach might be indexing method which uses serial clustering of
words in text [12].

Term Weighting

The term weighting for the vector space model is handled by statistics. There are
three main factors of term weighting: term frequency factor, term collection frequency
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factor and document vector length normalization factor. The end term weight might
be constructed from all or a subset of mentioned factors. E.g., the inverse document
frequency assumes that the importance of a term is proportional with the number of
documents the term appears in [51]. Evaluations show that best results w.r.t. recall and
precision, are obtained by using weighting schemes that incorporate all three factors
[53, 39].

Obtaining Similarities

The document similarity is determined by using associative coefficients based on the
inner product of a document vector and a query vector (queries are treated as regular
documents), where word overlap indicates similarity. The inner product is usually
normalized. In most cases the cosine coefficient, which measures the angle between
document vectors is used as the similarity measure. However, other measures are also
applicable, e.g. Jaccard and Dice coefficients [52].

car

red

fast

“re
d
 c
a
r”

“fast car”

“f
as
t r
ed
 c
ar
”

β

Figure 2.1: Vector space model visualization.

In Figure 2.1 we provide visualization of VSM document models. Here, the multi-
dimensional space consists of three dimensions. These dimensions represent car, fast
and red terms. Further, document models are constructed as vectors with term weights
at respective term dimension places. In our example, document vectors “fast car”,
“red car” and “fast red car” are visualized. Finally, the level of document similarity is
expressed by angles between corresponding document vectors. In our example the β
angle defines similarity level between “fast car” and “fast red car” documents. Further,
we want to define VSM similarity between two documents using the formalism defined
in section 2.1:
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~di =
(
ωdi,t1 , ωdi,t2 , . . . , ωdi,t#T

)
~dj =

(
ωdj ,t1 , ωdj ,t2 , . . . , ωdj ,t#T

)
sim(di, dj) =

~di
~dj

|~di||~dj |

=
∑

t∈T ωdi,tωdj ,t√∑
t∈T ω2

di,t

√∑
t∈T ω2

dj ,t

The simplest term weighting schema assumes term weights to be equal to the document
term occurrences ωd,t = αd,t. The classic vector space model as proposed by Salton,
Wong and Yang [54] had both local and global parameters incorporated in the term
weight ω equation (known as the tf-idf [51, 53]):

ωd,ti =
αd,ti

maxt∈T αd,t
log

#D

# {e ∈ D : αe,ti
> 0}

tf-idf allows seldom terms to get higher weight, since they are good discriminators,
however it requires costly implementation—especially when a document collection is
part of a dynamic environment. The VSM has the following limitations:

• Long documents are considered poor representatives of the vector space model
because they have poor similarity values (a small scalar product and a large di-
mensionality);

• Search keywords must precisely match document terms; word substrings might
result in “false positive match1” It occurs when we are observing a difference
in terms, when in truth there is none (e.g., due to the different word inflected
forms);

• The search keywords that are typed during the search in an inappropriate man-
ner give poorer results. This can be explained the same way as the previous
statement;

• Semantic word relations are not considered. Similarity between terms “car” and
“auto” referring to the same class of objects is neglected.

The VSM has been criticized for being ad hoc. However, to the positives of the model
one can count its simplicity and intuitive graphical representation of documents and
their similarities. For a thorough theoretical analysis of the vector space model please
refer to [49].

2.4 Topic-based Vector Space Model
The Topic-based Vector Space Model (TVSM) is a vector-based approach for doc-
ument comparison. In contrast to the classical VSM the approach proposed by the
TVSM does not assume independence between terms by being flexible in definition of

1 This type of error occurs when we are observing a difference when in truth there is none (or more
specifically—no statistically significant difference).
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term similarities. The main difference of TVSM as compared to VSM is the opera-
tional vector space. TVSM represents documents as vectors in a k dimensional space
R which has only positive axis intercepts [11, 36].

R = Rk
≥0 with k ∈ N≥1

Each dimension of R represents a so-called fundamental topic. These fundamental
topics are assumed to be orthogonal and independent from each other.

A term ti ∈ T , with T beeing the set of all terms, is represented by a term vector ~ti
in the R vector space. Each term vector is assigned a term weight between zero and one.
A term vector direction represents term relevance according to fundamental topics,
whereas the algebraic term vector length

∣∣~ti∣∣ corresponds to a term weight which is
defined to be not larger than one and not lesser than zero:

~ti = (ti,1, ti,2, . . . , ti,k)∣∣~ti∣∣ =
√

t2i,1 + t2i,2 + . . . + t2i,k ∈ [0, 1]

A document model of a document dj ∈ D is represented in TVSM by a document
vector ~dj ∈ R. Further, the document vector length is normalized to the length of one
for further convenient usage (since only the vector direction is of interest):

∀dj ∈ D : ~dj =
1∣∣∣~δj

∣∣∣~δj ⇒
∣∣∣~dj

∣∣∣ = 1 with ~δj =
∑
ti∈T

ωdj ,ti
~ti

Here, ωdj ,ti
represents the weight of a fundamental topic ti in a document dj . One

might apply different weighting schemes, e.g. similar to those described in the context
of the VSM (refer section 2.3).

In Figure 2.2 we present TVSM document model visualization for a “fast red car”
document. The TVSM document model is obtained as a sum of term vectors represent-
ing terms in the document.

“fast red car”

fast

red

car

Figure 2.2: TVSM document model visualization.

The similarity between two documents di and dj is defined as the scalar product
of document vectors. This is equal to the cosine of the angle βdi,dj

between document
vectors, since document vectors always have the vector lenght of one:

sim(di, dj) = ~di
~dj

=
∣∣∣~di

∣∣∣ ∣∣∣~dj

∣∣∣ cos βdi,dj

= cos βdi,dj
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Figure 2.3: TVSM operational vector space construction principles. a) negative and
positive axis intercepts b) only positive axis intercepts.

The rationale behind the usage of only positive axis intercepts in the TVSM is
shown in the visualization of two possible approaches in Figure 2.3: usage of negative
and positive axis intercepts—part a, and usage of only positive axis intercepts—part
b. The part b scenario allows only the angles between term vectors from 0◦ to 90◦.
This allows term similarity values to stay between zero and one as: ∀β ∈ [0◦, 90◦] →
cos(β) ∈ [0, 1]. This allows intuitive understanding of the document similarities as
0—to represent documents being totally not similar and 1—to represent absolutely
similar documents. The part a scenario, however, allows similarity values to be in the
interval [−1, 1] as for: ∀β ∈ [0◦, 180◦] → cos(β) ∈ [−1, 1]. Basically, it is more of
a convenience issue, as now, documents “fast car” and “slow car” from Figure 2.3.a
have a similarity of 0, which intuitively says against any similarity between these two
documents.

With the knowledge of term vector lengths and angles between them one computes
documents similarities as follows:

sim(di, dj) = ~di
~dj

=
1∣∣∣~δi

∣∣∣~δi
1∣∣∣~δj

∣∣∣~δj

=
1∣∣∣~δi

∣∣∣ ∣∣∣~δj

∣∣∣~δi
~δj

=
1∣∣∣~δi

∣∣∣ ∣∣∣~δj

∣∣∣
∑
tk∈T

ωdi,tk
~tk
∑
tl∈T

ωdj ,tl
~tl

=
1∣∣∣~δi

∣∣∣ ∣∣∣~δj

∣∣∣
∑
tk∈T

∑
tl∈T

ωdi,tk
ωdj ,tl

~tk~tl
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Figure 2.4: Topic-based vector space model visualization.

The length of the unnormed document vector di can be computed as follows:

∣∣∣~δi

∣∣∣ =

∣∣∣∣∣∑
tk∈T

ωdi,tk
~tk

∣∣∣∣∣
=

√√√√∣∣∣∣∣∑
tk∈T

ωdi,tk
~tk

∣∣∣∣∣
2

=

√√√√(∑
tk∈T

ωdi,tk
~tk

)2

=
√∑

tk∈T

∑
tl∈T

ωdi,tk
ωdi,tl

~tk~tl

In Figure 2.4 we provide visualization of the TVSM operational vector space. Here,
the multi-dimensional space consists of three dimensions. But, as opposed to the VSM
example presented in Figure 2.1, dimensions are constructed from fundamental topics.
In our example these are vehicle, color and motion topics. Afterwards, we visualize
one possible term vectors assignment.

By introducing such a topic-grounded vector space the TVSM is capable of ex-
pressing synonymy, inflection, composition, derivation, hyponymy and meronymy (see
section 2.2) through assigning appropriate angles between term vectors. Furthermore,
the TVSM is compatible with stop lists and stemming, which has also been formally
shown in [36]:

• Synonymy—high linguistic interdependency, term vector angles tend or equal to
0◦, like with car and auto term vectors in our example;

• Inflection—maximal linguistic interdependency, term vector angles equal 0◦,
like with wave and waving term vectors in our example;

• Composition—language dependent, e.g., in English—low interdependency, term
vector angles tend to 90◦;

• Derivation—high linguistic interdependency, term vector angles tend to 0◦;
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• Hyponymy—high interdependency, term vector angles are low, heuristics that
assigns vector angles might consider the number of intermediate relation layers;

• Meronymy—high interdependency, term vector angles are low, heuristics that
assigns vector angles might consider the number of intermediate relation layers.

The procedure of obtaining term vector lengths and angles for TVSM is not for-
mally defined. One might come up with own feasible approaches like for example
presented in [11]. Also, the term vector length concept is left open for own contribu-
tions. In general it is recommended to set vector length to one for content bearing terms
and to zero for stop list terms, or use approaches which are depending on the inverse
term frequency regarding the whole document base. By this, seldom (and therefore
well discriminating) terms get a higher weight over frequent terms.



Chapter 3

Enhanced Topic-based Vector
Space Model

It was already mentioned in section 2.4 that the TVSM takes the word semantic re-
lations better into account compared to the VSM. However, it still lacks a formal ap-
proach for obtaining term vector lengths and inter-term vector angles. Further, it is not
possible to express such linguistic phenomena like homography, metonymy and word
groups (see section 2.2) in the TVSM. The enhanced Topic-based Vector Space Model
(eTVSM) aims to close this gap. This is implemented through obtaining document
similarities not on the basis of term similarities, but on the basis of term interpreta-
tions. The operational vector space in the eTVSM is similar to the vector space of the
TVSM, however document models are now constructed from interpretation vectors.
Interpretation vectors in turn are constructed following a predefined formal procedure.
The eTVSM operates with the following concepts: word, word stem, term, interpreta-
tion and topic. Term relations are expressed in an ontology which operates with term,
interpretation and topic concepts. The eTVSM was first proposed in [36]. This chapter
is devoted to the eTVSM formalism.

3.1 eTVSM Ontology
The eTVSM operational vector space has to be derived from a domain ontology which
is responsible to hold information about relationships between various concepts of a
domain. In computer science, an ontology is a data model (data structure) that repre-
sents a domain and is used to reason about objects in that domain and relations between
them [24]. To construct an ontology which will represent word relations, the eTVSM
uses concepts of terms, interpretations and topics. These concepts are organized in a hi-
erarchical, non-cyclic directed graph [27] structure. Edges of this graph aim to specify
semantic relations of concepts of the same class, as well as inter-conceptual semantic
relations.

3.1.1 Topic Map
Just as in the case with the TVSM (see section 2.4) the operational vector space di-
mensionality of the eTVSM is defined by topics. However, the difference is that topic
vectors now do not need to be orthogonal. Angles between topic vectors are defined by

13
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τ 1

τ 2 τ 3

τ 4 τ 5 τ 6 τ 7

Figure 3.1: Abstract topic map example.

topic concepts relation level defined in ontology. The topic relations are expressed in a
topic map, which is a part of a domain ontology used by the eTVSM. A Topic map is a
directed graph with topics as nodes. The graph edges assign super-, sub-topic relations.
The only constraint on the topic map structure is that directed edges should not form
cycles. The edges are not typed. Therefore, one is free to define any kind of relations
by the edges. Such relations might be: is a, part of or member of relation. Angles
between topic vectors are, therefore, only dependent on topic map configuration, but
not on the type of edges used.

In Figure 3.1 an abstract topic map example is shown which will be used here to
illustrate computation of topic similarities which are taken up by the eTVSM for the
calculation of term and document similarities. A super-topic can relate to an arbitrary
number of sub-topics. Moreover, two different topics can share a common sub-topic.
Such a graph, which consists of all connected topics represents a domain where all
topics will gain similarity level based on the amount of intermediate topics in the topic
map structure. Therefore, it is feasible to model several domains by introducing sev-
eral topic map graph-like structures that are not connected. Topics from one of such
disconnected domain will be orthogonal (topic similarity will be equal to zero) to all
the topics from the other domains. In general, it is possible to specify topic map data
structure as it is shown in Figure 3.2 provided in Entity-Relationship-Diagram notation
(see [17]).

Topic

Map
super-topic

sub-topic

(0,n)

(0,n)

Figure 3.2: Topic map data structure.

Obtaining Topic Similarities

The process of obtaining topic similarities can be subdivided into two routines. First,
eTVSM proposes formal procedure for gaining topic vectors from the structure of a
topic map. This heuristic process is proposed in [36]. Afterwards, topic similarities are
obtained as scalar product of topic vectors. The operational vector space dimensional-
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ity is specified by the number of topics in the system.
Being t the number of topics in the topic map, a set of all topics can be given as

Θ = {τ1, τ2, . . . , τt}. In order to represent the topic map structure we can use a super-
topic relation S (τi) ⊆ (Θ \ τi). By defining the set S(τi) for each topic we completely
define structure of the topic map. Returning to the abstract topic map example from
Figure 3.1, the super-topic relations are defined as follows:

S(τ1) = {}
S(τ2) = {τ1}
S(τ3) = {τ1}
S(τ4) = {τ2}
S(τ5) = {τ2}
S(τ6) = {τ2, τ3}
S(τ7) = {τ3}

The super-topic relation allows us to construct more complex relations, such as a
p-level super-topic relation. This transitive relation provides super-topics that are p
levels above the target topic.

Sp(τi) = S(τi) for p = 1
Sp(τi) =

⋃
τk∈Sp−1(τi)

S(τk) for p > 1

To obtain all super-topics of the target topic we can use an unbound transitive super-
topic relation:

S∗(τi) = S1(τi) ∪ S2(τi) ∪ S3(τi) ∪ . . .

Again, returning to the abstract topic map example from Figure 3.1 the unbound tran-
sitive super-topic relations are defined as follows:

S∗(τ1) = {}
S∗(τ2) = {τ1}
S∗(τ3) = {τ1}
S∗(τ4) = {τ1, τ2}
S∗(τ5) = {τ1, τ2}
S∗(τ6) = {τ1, τ2, τ3}
S∗(τ7) = {τ1, τ3}

A set of leaf topics ΘL contains all topics that are not included into any super-topic
relation of any topic from a topic map which means that they don’t have any sub-topics:

ΘL = {τi ∈ Θ : ¬∃ τk ∈ Θ with τi ∈ S(τk)}

In our abstract topic map example, the leaf topics set consists of:

ΘL = {τ4, τ5, τ6, τ7}

Respectively, complementary to the ΘL is a set of internal topic nodes ΘN . ΘN in-
cludes topics that have at least one sub-topic:

ΘN = {ΘL = Θ \ΘL

In our abstract example, the internal topics set consists of:
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ΘN = {τ1, τ2, τ3}

As we have stated before, a topic vector ~τi = (τi,1, τi,2, . . . τi,t) ∈ Rt is assigned
to each topic from a topic map. The approach for gaining topic vectors separates two
formal procedures for leaf topics ΘL and internal topics ΘN as proposed in [36]. In
case of leaf topics, topic vectors are obtained as:

∀τi ∈ ΘL : ~τi =
∣∣(τ∗i,1, τ∗i,2, . . . , τ∗i,t)∣∣

with τ∗i,k =
{

1 if τk ∈ S∗(τi) ∨ i = k
0 else

While in case of internal topic nodes, topic vectors are obtained as:

∀τi ∈ ΘN : ~τi =

∣∣∣∣∣∣
∑

τs∈Θ:τi∈S(τs)

~τs

∣∣∣∣∣∣
The heuristics behind this approach is that leaf nodes are considered as main build-

ing blocks. Leaf topics are seen as the specific part of their super-topics. That is why,
all dimensions of the vector that correspond to the set S∗(τi) ∪ τi acquire same value
of one. Then, topic vectors for topics from set ΘN are obtained as the sum of its direct
children. The logic behind is that internal topic node describes all topics that are its
direct children. Also, by normalizing vector length to one, the weight of each topic in
topic vector becomes dependent on the number of intermediate topics in a topic map
structure. The normalization is also performed because it is only important to know the
direction (angles) of topic vectors, therefore after normalization it holds:

∀τi ∈ Θ : |~τi| = 1

Thus, the formal procedure for obtaining topic vectors is as follows. First, leaf
topic vectors are calculated (including normalization). Then we are able to calculate
all super-topic vectors of leaf topics, and so on up to the root topic node(s). A recursive
approach to implement this procedure is appropriate. Further, we provide topic vectors
for topics from our abstract topic map example from Figure 3.1:

~τ1 = (0.669, 0.495, 0.429, 0.120, 0.120, 0.255, 0.174)
~τ2 = (0.642, 0.642, 0.194, 0.224, 0.224, 0.194, 0)
~τ3 = (0.607, 0.282, 0.607, 0, 0, 0.282, 0.325)
~τ4 =

(
1/
√

3, 1/
√

3, 0, 1/
√

3, 0, 0, 0
)

~τ5 =
(
1/
√

3, 1/
√

3, 0, 0, 1/
√

3, 0, 0
)

~τ6 = (1/2, 1/2, 1/2, 0, 0, 1/2, 0)
~τ7 =

(
1/
√

3, 0, 1/
√

3, 0, 0, 0, 1/
√

3
)

Once we have all topic vectors we can obtain topic similarity of two topics as the
scalar product of corresponding topic vectors. Because topic vectors are normalized,
the scalar product is equal to the cosine of the angle βij between topic vectors:
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sim(τi, τj) = ~τi~τj

=
t∑

k=1

τi,kτj,k

= cos βij

Finally, all pair-wise topic similarities from the abstract topic map example from
Figure 3.1 are given in Table 3.1:

τ1 τ2 τ3 τ4 τ5 τ6 τ7

τ1 1.000 0.933 0.933 0.741 0.741 0.924 0.734
τ2 0.933 1.000 0.742 0.871 0.871 0.836 0.483
τ3 0.933 0.742 1.000 0.513 0.513 0.888 0.888
τ4 0.741 0.871 0.513 1.000 0.667 0.577 0.333
τ5 0.741 0.871 0.513 0.667 1.000 0.577 0.333
τ6 0.924 0.836 0.888 0.577 0.577 1.000 0.577
τ7 0.734 0.483 0.888 0.333 0.333 0.577 1.000

Table 3.1: Topic similarities for the abstract topic map example.

3.1.2 Interpretations

In the eTVSM interpretations are intermediate links between topics and terms. Con-
ceptually, interpretations play the role of semantic terms. By introducing intermediate
concept you as the modeler of a domain ontology receive more freedom and opportu-
nities to express linguistic phenomena. It is possible to map two terms car and auto
to the same interpretation to express total synonymy relation; more complex structures
are discussed in detail in [36].

Topic

Map
super-topic

sub-topic

(0,n)

(0,n)
Interpretation IT-Map

(1,n) (0,n)

Figure 3.3: Interpretation to topic relation in eTVSM ontology.

Figure 3.3 shows the relation of interpretation concept to topic concept. Basically,
an interpretation can be linked with an arbitrary number of topics. However, links be-
tween interpretations are not allowed. Because a topic map structure is free of cycles,
provided extension to the topic map preserves this property. Interpretations now be-
come leaf nodes of the ontology. A document model in eTVSM is stored in terms of
interpretations.
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Obtaining Interpretation Similarities

Interpretation similarities are obtained similar to topic similarities. Before we will start
with constructing interpretation vectors, we will present some formalism:

• Φ, is the set of all interpretations;

• g(φi) ∈ [0 . . . 1], is the interpretation weight with φi ∈ Φ;

• T (φi) ∈ ℘(Θ) \ {}, is the interpretation to topic assignment, where ℘(Θ) is a
powerset of all topics.

Now, the interpretation vector ~φi = (φi,1, φi,2, . . . φi,t) can be defined as:

~φi =
g(φi)∣∣∣∑τk∈T (φi)

~τk

∣∣∣
∑

τk∈T (φi)

~τk

We obtain weighted interpretation vectors (with g(φi) beeing the weight) as a normal-
ized sum of topic vectors which are linked with the target interpretation. Visualization
of the resulting interpretation vector is given in Figure 3.4:

railcar.τautomobile.τ

?.carφ railcar.φauto.φ railcarrailcar .,. φτ

autoautomobile .,. φτ

?

.c
a
r

φ

Figure 3.4: Interpretation to topic assignment example.

Interpretations similarity is defined as the scalar product of two interpretation vec-
tors:

~φi
~φj =

t∑
k=1

φi,kφj,k

The angle βij between interpretation vectors is:

βij = cos−1
~φi

~φj

g(φi)g(φj)

3.1.3 Terms
Term are treated as the smallest information unit that has one or several semantic in-
terpretations. To express this multiplicity in semantic meanings, term might be linked
with arbitrary number of interpretations. Figure 3.5 shows the relation between term
and interpretation concepts (TI-Map). Another relation (SI-Map) is used to assign so
called support terms to the term-interpretation link. The role of support terms is to ex-
plain semantic meaning of the TI-Map link. Furthermore, support terms are intended
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InterpretationTerm

TI-Map
(1,n) (0,n)

SI-Map
(0,n) (0,n)

Figure 3.5: Term to interpretation relations in eTVSM ontology.

to be used for disambiguation of terms which means: to find a proper decision what is
the “right” interpretation of a term (in case it might have several ones).

Basically, support terms are terms that co-occur frequently in a document with the
term they are related to if a specific interpretation of the term is used. Consider inter-
pretation to topic assignment example given in Figure 3.4. Also, consider that term car
was designed to be linked with all three interpretations: φ.auto, φ.car? and φ.railcar.
Consider auto interpretation link to be supplied by the following support terms: auto,
automobile, machine and motorcar. At the same time railcar interpretation link has fol-
lowing support terms: train, railway car, railroad car, railway, railroad. Once we find
the term car in a document, support terms assist us in deciding for the right interpre-
tation to include in a document model. If a document contains terms like automobile,
machine, motorcar it is obvious to decide for the φ.auto interpretation. Otherwise,
one should decide for φ.railcar interpretation when a document discusses trains or
railway. In case when it is impossible to give a significant preference to one of the in-
terpretations a decision for the φ.car? interpretation is useful to avoid wrong decision.

A term can consist of an arbitrary number of words. Terms that consist of more
than one word can be referred to as compound terms (see section 2.2). E.g., terms
like President John F. Kennedy are compound terms. This allows treating such term
occurrences as the interpretation of “the 35th President of the United States” rather than
attempting to find appropriate interpretations from four parts of the string tokenized by
space characters. However, the ability of the eTVSM to identify such compound terms
greatly depends on an ontology you have modeled. You can as well define an ontology
that does not recognize the term President John F. Kennedy. But, what is important:
you as the modeler have such an opportunity to define compound terms if appropriate.
Inter-term links are not allowed. Therefore, by attaching terms to interpretations we
keep eTVSM ontology structure free from cycles. In Figure 3.6 we further refine our
example from Figure 3.4 by attaching terms.

3.1.4 eTVSM Ontology Modeling Language
So far we have looked into concepts that contribute to a domain ontology which can
be used by the eTVSM. These are topics, interpretations and terms. All together, by
organizing them in a directed graph structure, they describe the world which an eTVSM
system is capable of “understanding”. eTVSM ontology concepts and their relations
are shown in Figure 3.7.

The quality of retrieval results provided by an eTVSM system—as it will be shown
later—greatly depends on the ontology upon which it operates. Therefore, the task of
ontology modeling is of high importance. We have already shown how we can graph-
ically represent an ontology. It is now time to present a common eTVSM ontology
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railcar.τautomobile.τ

?.carφ railcar.φauto.φ

carauto railcar
railroad 

car

railway 

car
motorcarautomobile

Figure 3.6: Term to interpretation to topic assignment example.

Topic

Map
super-topic

sub-topic

(0,n)

(0,n)
Interpretation IT-Map

(1,n) (0,n)

Term

TI-Map

(1,n)

(0,n)

SI-Map

(0,n)

(0,n)

Figure 3.7: eTVSM ontology concepts relations.

graphical modeling language as it was proposed in [36]. Graphical notation for ontol-
ogy concepts is shown in Figure 3.8.

Topic

Interpretation

Term

- Defines a topic

- Defines an interpretation

- Defines a term

Figure 3.8: Graphical notation for eTVSM ontology concepts.

In order to define concept relations, following types of connector edges shown in
Figure 3.9 are used. The original eTVSM ontology modeling language definition also
proposes shortcuts (see Figure 3.10) in case when both, a topic and an interpretation,
have the same name or there are no explicitly assigned terms to the interpretation, and
this interpretation concept is just used to connect a term to a topic.

Support terms can be modeled as labels on term to interpretation edges. Alterna-
tively, support terms can be derived automatically from the eTVSM ontology graph
structure as terms that are assigned to neighboring interpretations. The original source
of the modeling language proposes to automatically assign a term to a topic, through
intermediate interpretation concept, all having the same name—the name of the term.
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- Defines a super-topic to sub-topic 

relation (in the arrow direction)

- Assigns an interpretation to a topic

- Assigns a term to an interpretation

Figure 3.9: eTVSM ontology connector edges concepts.

Topic = 

Interpretation

- Defines a topic and an 

interpretation with the same name 

and assigns this interpretation to 

this topic

Figure 3.10: eTVSM ontology modeling notation shortcut.

However, we see this as the convenience extension to the modeling language that was
presented.

3.2 eTVSM Ontology Modeling
We have claimed that eTVSM is capable of representing major linguistic phenomena
like: inflection, composition, derivation, synonymy, hyponymy, meronymy, homog-
raphy, metonymy and word groups. In this section we want to provide examples of
eTVSM ontology modeling patterns for representing some linguistic phenomena with
the graphical language presented in section 3.1.4. Explanation of proposed linguistic
phenomena can be found in section 2.2.

Homography

Homography is a precedent when two words have the same orthography but different
interpretations. See section 2.2.

Computer

mouse
MouseMouse?

mouse
computer 

mouse

animal

rodent

computer

device

Figure 3.11: eTVSM ontology homography modeling.

Metonymy

Metonymy is the substitution of one word for another with which it is associated. See
section 2.2.
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News media
Press

(newspapers)

press

Press

(news writers)

public press

newspaper

magazine

photographer

writer

Figure 3.12: eTVSM ontology metonymy modeling.

Figures 3.11 and 3.12 present eTVSM ontology patterns to represent homography
and metonymy linguistic term relations. However, the degree of freedom of eTVSM
ontology composition allows for constructing of more complex arbitrary structures that
do not fit into presented patterns or combine them. For further details refer to [36].

3.3 Constructing the eTVSM Document Model
The primary responsibility of the eTVSM as the Information Retrieval model is to pro-
vide similarities between documents. In order to obtain similarity values the eTVSM
operates on formal document representations—document models. In this section we
will explain steps which the eTVSM undertakes in order to construct document mod-
els. Figure 3.13 presents the overall picture of the schema for eTVSM document model
construction. Heuristics, related with such an approach, is discussed later in section 3.5.

Document:

Plain text:

Words:

Stems:

Interpretations:

Terms:

An automobile (or motor car) is a wheeled passenger vehicle

an automobile or motor car is a wheeled passenger vehicle

an  automobile  or  motor  car  is  a  wheeled  passenger  vehicle

an  automobile  or  motor  car  is  a  wheel  passenger  vehicle

automobile   “motor car”   wheel   passenger   vehicle

car.φ wheel.φ passenger.φ vehicle.φ

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Figure 3.13: eTVSM document model construction steps.

Document to Plain Text Document

This step includes removing formatting from a source document. Also, one might con-
sider filtering out a character subset from a string. Consider the following document:

An automobile (or motor car) is a wheeled passenger vehicle that carries
its own motor.

The result of applying this step to the document might return a string that looks like:
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an automobile or motor car is a wheeled passenger vehicle that carries its
own motor

After this step all the formating of the document is filtered out.

Plain Text Document to Words

At this step a document is tokenized by a space separating characters set to give an
ordered set of words that appear in the document. The output of this step applied to our
document example:

an automobile or motor car is a wheeled passenger vehicle that carries its
own motor

will result in:

{an, automobile, or, motor, car, is, a, wheeled, passenger, vehicle, that,
carries, its, own, motor}

The output is an ordered multiset, with the member possibly included multiple times
in the multiset. The reason to preserve word ordering will become clear later in this
section.

Words to Stems

At this step a stemming algorithm (see section 2.1) is applied to each word from a
multiset resulting from the previous step:

{an, automobile, or, motor, car, is, a, wheeled, passenger, vehicle, that,
carries, its, own, motor}

will result to something like:

{an, automobile, or, motor, car, is, a, wheel, passenger, vehicle, that, carry,
it, own, motor}1

This step preserves word ordering provided from the previous step and results to an
ordered stems multiset.

Stems to Terms

At this step we extract terms that are present in eTVSM ontology from a document.

{an, automobile, or, motor, car, is, a, wheel, passenger, vehicle, that, carry,
it, own, motor}

will result to something like:

{{automobile}, {motor, car}, {wheel}, {passenger}, {vehicle}, {carry},
{motor}}

1 The result heavily depends on the stemmer applied.
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Now, the reason for preserving stem order becomes clear. This was primarily done to
be able to recognize compound terms that consist of more than one word, like motor
car in our example. Note, that motor car string has a chance to be recognized as the
term {motor, car} only, if such a compund was explicitly modeled in eTVSM ontology.
From this moment on, the order of concepts becomes worthless for the eTVSM.

Stopword removal is implicitly included in this step. If the word is not found as a
part of any term modeled in the ontology it will be filtered out. Preserving stopwords
up to this step allows recognition of compounds that include stopwords, e.g. head of
state—“the chief public representative of a country who may also be the head of gov-
ernment” gets the chance to be recognized as a single term. In case stopword removal
has happened before, in previous steps, this step will probably classify this string as
composed of two terms head and state. The impact of such misjudgment might result
in “wrong” document model and as a consequence distortion of document similarity
values.

Terms to Interpretations

At this step we resolve terms to interpretations by selecting interpretations that are
modeled in domain ontology as connected to a target term. In case there are multiple
interpretations connected to the target term, the decision should be carried out based
on the document content analysis.

Vehicle

Wheeled 

vehicle

Car Wheel

Passenger Engine

Carry vehicle

wheel

engine

motor

car

automobile

motor car

carry

passenger

IS-A

IS-A HAS-PART

HAS-PARTDOMAIN

Figure 3.14: eTVSM ontology extract example.

Considering the eTVSM ontology extract proposed in Figure 3.14 the application
of this step to the result of the previous step:

{{automobile}, {motor, car}, {wheel}, {passenger}, {vehicle}, {carry},
{motor}}

will result to:

{φ.car, φ.car, φ.wheel, φ.passenger, φ.vehicle, φ.carry, φ.motor}
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This multiset of interpretations is the eTVSM document model for the initial document.
The content and semantics of the document is completely defined by eTVSM ontology
concepts and can be obtained by looking into the relations between concepts included
into the document model.

Automobile and motor car terms both get mapped to the φ.car interpretation as
these terms are both members of the total synonymy pattern instance for topic τ.car.
Resolution of other terms is trivial one-to-one term to interpretation mapping in our
example. The domain ontology of the example also sets a meronymy relation between
τ.engine and τ.car, τ.wheel and τ.wheeled vehicle topics. A hyponymy relation is set
between τ.car and τ.wheeled vehicle, τ.wheeled vehicle and τ.vehicle topics. Thus,
we obtain an automobile domain as the directed graph of interconnected automobile
related topics. Orthogonal to automobile domain is the τ .carry topic which in our
example is not connected to any other topic.

3.4 eTVSM Document Similarity

Now, as we have formal document representation (the document model), we can derive
a procedure for obtaining document similarities. eTVSM document similarity calcula-
tion is similar to one in TVSM. The difference is that TVSM operates directly on terms
and eTVSM has an intermediate concept of interpretation between topic and term con-
cepts which is used for obtaining similarities. Thus, eTVSM treats a document as
the entity composed of interpretation concepts. It was already shown how this aids in
representing linguistic phenomena (see section 3.2). A document vector is defined as:

∀dj ∈ D : ~dj =
1∣∣∣~δj

∣∣∣~δj ⇒
∣∣∣~dj

∣∣∣ = 1 with ~δj =
∑
φi∈Φ

ωdj ,φi
~φi

The document vector is a weighted sum of interpretation vectors which are included
in the document model. The document vector is normalized to the length of one. The
document vector length is calculated similar to the TVSM:

∣∣∣~δi

∣∣∣ =

∣∣∣∣∣∣
∑

φk∈Φ

ωdi,φk
~φk

∣∣∣∣∣∣
=

√√√√√
∣∣∣∣∣∣
∑

φk∈Φ

ωdi,φk
~φk

∣∣∣∣∣∣
2

=

√√√√√∑
φk∈Φ

ωdi,φk
~φk

2

=
√∑

φk∈Φ

∑
φl∈Φ

ωdi,φk
ωdi,φl

~φk
~φl

Finally, the similarity between two documents di and dj is again obtained analogously
to the TVSM, as the scalar product of corresponding document vectors. Considering
the document vector normalization, the similarity value becomes equal to the cosine of
the angle between document vectors:
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sim(di, dj) = ~di
~dj

=
1∣∣∣~δi

∣∣∣~δi
1∣∣∣~δj

∣∣∣~δj

=
1∣∣∣~δi

∣∣∣ ∣∣∣~δj

∣∣∣~δi
~δj

=
1∣∣∣~δi

∣∣∣ ∣∣∣~δj

∣∣∣
∑
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ωdi,φk
~φk

∑
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ωdj ,φl
~φl

=
1∣∣∣~δi

∣∣∣ ∣∣∣~δj

∣∣∣
∑

φk∈Φ

∑
φl∈Φ

ωdi,φk
ωdj ,φl

~φk
~φl

3.5 Heuristics for the eTVSM
In this section we would like to discuss heuristics in eTVSM. These are the points
where one might apply several solutions in eTVSM implementation that consequently
will lead to different similarity values produced for the same document set. It is up to
a developer and an ontology modeler to find the best approach compromise between
factors that will be discussed now.

Ontology modeling. The eTVSM extends the TVSM by defining a formal approach
for acquiring document vectors and consequently angles between these vectors from
the eTVSM ontology structure. Like any other modeling task, eTVSM ontology mod-
eling can be accomplished in numerous ways, applying different principles leading
to different results. Different modeling examples, including same concepts that yield
different similarity values, were presented in [36].

Ontology mapping on vectors. The formal procedure for deriving document vec-
tors which was described in this chapter is just one reasonable approach. One might
think of any other usable approach which will transform eTVSM ontology concepts
to document vectors which will express ontology relations in a vector space through
angles between concept vectors.

Interpretation weights. As it was shown in section 3.1.2 interpretation vectors are
obtained as a weighted sum of topic vectors. However, it is not defined how to obtain
weight values. It is just stated that these values should be assigned values on the [0, 1]
interval. Moreover, [36] proposes to initially assign to all weights the value of one.
The reason for the interpretation to topic relation weight assignment is to express the
relation of an interpretation to the specific topic in case when this interpretation is
connected to multiple topics. Thus, the assignment of values from the [0,1] interval
instead of just one has an intuitive advantage.

Term to interpretation link selection. This task should be solved when migrating
from terms contained in the document to interpretations. It is possible that one term is
assigned to many interpretations. However, it is required to select only one interpre-
tation. This choice is again a heuristic decision. Support terms discussed in section
3.1.3 should aid the selection decision. However, support terms alone are not enough
to carry out the deterministic decision in favor of a concrete interpretation.

Word to term resolution. Terms in eTVSM ontology are considered the smallest
content bearing unit with a specific semantic meaning. Consider the following word
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sequence obtained from a document—{new, york, city, tour}. Some possible term res-
olutions considering that all these terms are modeled in eTVSM ontology can be:

• {{new, york, city, tour}};

• {{new, york, city},{tour}};

• {{new, york}, {city, tour}};

• {{new}, {york, city}, {tour}};

• etc.

In a real size document the number of possible resolutions explodes. One possible
approach to solving this problem is at each step to take the longest possible term that
matches the document starting words. Afterwards, restart the procedure from a new
starting point—at the place where the last longest term has terminated. The procedure
is continued till the end of a document.

Preprocessing place. eTVSM is highly sensitive to the order and place of appli-
cability of document preprocessing steps. Consider the following document—“United
States of America”. In case the stemming and the stopword removal is done before
words to terms resolution the recognition of this string sample to a single term of
“North American republic containing 50 states” becomes impossible. Rather, the most
probable resolution will result three terms: unite, state and America.

Though so many heuristic points that are present in eTVSM, one might find here a
great potential for ad hoc model re-configuration. One possible use scenario might be
considering of user feedback on certain query results. One might express user inten-
tions in eTVSM ontology upon requirement arises to increase similarity values between
certain documents.





Chapter 4

Information Retrieval Quality
Measurements

4.1 Measurements
There are number of ways to measure how well the retrieved information of Informa-
tion Retreival systems matches the intended one. Before we introduce these measure-
ments lets take a look at the formalism needed to formally define the measurements:
Let D be a set of documents for validation and K be a set of criteria/queries. RS

k ⊆ D
is a set of documents which are relevant according to the system when criteria k has
been used, and {RS

k = D \ RS
k is a set of documents not relevant according to the

system. Analogously we can define RT
k ⊆ D as a set of documents “really” relevant

according to the user and {RT
k = D \ RT

k as a set of documents not relevant accord-
ing to the user. Figure 4.1 visualizes a single Information Retrieval experiment which
consists of criteria/query input and an analysis of retrieved documents.

R
S

k

R
T

k

D

Figure 4.1: Information Retrieval experiment visualization.

4.1.1 Recall
In these terms recall can be defined as the ratio of correct assignments by the system
divided by the total number of correct assignments:

Rk =
#
(
RS

k ∩RT
k

)
#RT

k

∈ [0 . . . 1]

Graphically this is depicted in Figure 4.2.

29
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Figure 4.2: Recall visualization.

R =
number of relevant documents retrieved

number of relevant documents

Recall measures the completeness of the results; therefore, high values are desirable.

4.1.2 Precision
Precision is the ratio of correct assignments by the system divided by the total number
of system assignments:

Pk =
#
(
RS

k ∩RT
k

)
#RS

k

∈ [0 . . . 1]

Graphically this can be depicted as in Figure 4.3:

R
S

k

RR
S

k

T

k
∩

D

Figure 4.3: Precision visualization.

P =
number of relevant documents retrieved

number of documents retrieved

Precision measures the accuracy of the results; therefore, high values are desirable.
Recall and precision can also be evaluated at a given cut-off rank, denoted as R@n and
P@n, where instead of all retrieved documents only top n are considered.

4.1.3 F -measure
F -measure can be used as a single quality measure of retrieval experiment. F -measure
is the weighted harmonic mean of precision and recall. F -measure can be obtained as:

F =
2pr

(p + r)
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It combines recall (r) and precision (p). This is also known as F1 measure because
recall and precision are evenly weighted. F1 measure was initially introduced by van
Rijsbergen [62]. In general case the formula for FN is given for arbitrary N as:

FN =

(
1 + N2

)
pr

p + N2r

Two other commonly used F measures are F0,5, which weights precision twice as
much as recall, and F2 measure, which weights recall twice as much as precision.

4.1.4 Error rate
As the negative measure of the system performance one can introduce the error rate:

Ek =
#
(
{RS

k ∩RT
k

)
+ #

(
RS

k ∩ {RT
k

)
#D

∈ [0 . . . 1]

The error rate measures the quota of errors; therefore, low values are desirable.
During the evaluation measurements for each single experiment should be col-

lected. The task of the systems comparison based only on a large amount of indi-
vidual observations is not feasible since this means that multi-dimensional values have
to be compared. Therefore an aggregation of these measurements is useful. One ap-
proach is based on acquiring individual measurement for each experiment and then
averaging over experiments. Or, the measurement might be computed globally over all
experiments. The former way is called macro-averaging and the latter way is called
micro-averaging. Further, the approach of macro averaging of measurements over ex-
periments with further aggregation of results through statistical tests for acquiring the
significance level of the evaluated parameter is proposed (see section 5.6).

4.2 Measurements Graphical Representation
Precision and recall are the most common Information Retrieval quality measure-
ments. These two measurements usually show an inverse relation. So that when one
measurement value increases—the other one decreases. The desired system state is
such when both recall and precision are equal to one. This is the case when an In-
formation Retrieval system returns exactly the number of documents which are rele-
vant

(
#RT

k

)
and all the returned documents are relevant

(
RT

k = RS
k

)
. This condition

should hold for every input query. Of course, such an ideal system is not realistic. In
the real world, Information Retrieval systems would behave more like it is shown in
Figure 4.4.

Two lines may represent the performance of different retrieval systems. One might
derive the graph like this by simply plotting the average over queries (recall, precision)
points, as the function of a cut-off rank, and connecting them. Further, one might fit in
a trendline or use any kind of smoothing technique. While the exact slope of the curve
may vary between systems, the general inverse relationship between recall and preci-
sion remains. Much of this relationship has to do with language. If the goal of a search
is comprehensive retrieval, then the searcher must include synonyms, related terms,
broad or general terms, etc. for each concept. He may decide to combine terms using
boolean rather than proximity operators. In addition, some secondary concepts may be
omitted. As a consequence of these decisions, precision will suffer. Because synonyms
may not be total synonyms and the probability of retrieving irrelevant material might
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Figure 4.4: Recall-precision plot.

increase. Broader terms may result in the retrieval of material which does not discuss
the narrower search topic. Using boolean operators rather than proximity operators
may increase the probability that the terms won’t be in context. Unfortunately, if the
searcher doesn’t use these techniques he won’t achieve high recall.

As it was shown in section 4.1—precision and recall are set-based measures. They
evaluate the quality of an unordered set of retrieved documents. Further, in chapter
5 we propose a new approach to Information Retrieval system comparison where the
comparison judgment has a strong statistical reasoning and provides significance level
of derived outcome, rather than leaving decision solely based on a visual plots compar-
ison.

However, often, the Information Retrieval scenario is such that it returns an ordered
by relevance list of documents. To evaluate such a ranked list, precision can be plotted
against recall after each retrieved document. Because, each input query might result a
different number of relevant documents, individual query precision values are interpo-
lated to a set of standard recall levels. Intuitively, we are trying to discover precision
once recall reaches a specific (standard) level. Usually, eleven standard recall levels are
used (from 0 to 1 in increments of 0.1).

The particular rule used to interpolate precision at standard recall level i is to use
the maximum precision obtained for the query for any actual recall level greater than
or equal to i. This interpolation rule also defines precision for a standard recall level
of 0.0. Note, in general, precision is not defined for a recall of 0.0. A recall level cor-
responds to a recall obtained with RS

k set constructed from top n documents returned
after a search procedure. Precision that corresponds to a recall level should be ob-
tained on same RS

k set (when a relevant document is not retrieved at all, its precision is
assumed to be 0). Interpolation to standard recall levels then should take place on all re-
call levels and corresponding precision values for n = 1 . . . N . Here, N is the number
of top documents that include all the relevant documents for the query searched.

Let us take a look at the following example. Let RT
k = {d3, d51, d67}. Further, let

us assume that our system has returned the following ordered by relevance sequence
of documents RS

k = {d7, d51, d33, d61, d3, d22, d1, d87, d6, d67, }. Here, the first doc-
ument is considered the most relevant—this is document d7. In our example, the first
relevant document retrieved is d51, which gives recall of 0.3̄ and precision of 0.5. Next
relevant document is d3 which gives us 0.6̄ recall at 0.4 precision. Next, and last,
relevant document d3 gives us 1.0 recall with 0.3 precision. In Figure 4.5, all actual
precision values are plotted with circles (and connected by a solid line) and the inter-
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Figure 4.5: Precision at standard recall levels plot.

polated precision is shown with the dashed line.
Afterwards, two Information Retrieval models can be compared based on the aver-

age precisions over all queries on 11 standard recall levels graph. Each recall-precision
average is computed by summing the interpolated precisions at the specified recall cut-
off rank (denoted by

∑
P@Ni where P@Ni is the interpolated precision at recall level

i and a cut-off rank N ) and then dividing by the number of queries:∑#Queries
j=1 Pj@Ni

#Queries
i = {0.0, 0.1, 0.2, . . . , 1.0}

The average plots of different runs/models can be superimposed on the same graph
to determine which run is superior. Curve which is closest to the upper right-hand
corner of the graph (where recall and precision are maximized) indicates the best recall-
precision performance system. Also, often such comparisons are carried out in three
recall ranges: [0...0.2), [0.2...0.8) and [0.8...1.0]. Interval borders are dictated by the
interpolation rule defined before. These ranges characterize high precision, middle
recall, and high recall performance, respectively.





Chapter 5

Comparison of Information
Retrieval Models

Many Information Retrieval models and systems exist. Some of them are quite sim-
ple and do not require much computation power, others have sophisticated algorithms
claiming to deliver better results. In addition, new and promising models appear on the
market. In fact, in chapters 2 and 3 we have described the evolution steps of eTVSM
retrieval model from VSM, through TVSM. However one question still remains: is it
better than the other ones presented in this work or any other existing models?

In this chapter we discuss the method of performing quantitative evaluation of an
Information Retrieval system implementing an Information Retrieval model. We pro-
pose statistical approaches tailored for the purpose of Information Retrieval model
comparison. As a consequence we can come up with a model effectiveness order
through their pair-wise comparison. In this case we can say which system performs
better under the given conditions. Another perspective of this problem arises when in-
stead of two alternative systems, we have one system which we think might be capable
of beeing better then the other. In this situation, we might for instance want to evaluate
how well it performs under specific model setup and how it reacts to changes of setup
variables. This is especially important when evaluating a model which performance
highly depends on its internal configuration. This is exactly the case with the eTVSM.
The results provided by the eTVSM highly depend on the configuration of the domain
ontology which is used by the eTVSM.

This chapter includes a complete description of all steps that should be taken to
perform a quantitative evaluation of Information Retrieval models. It includes prepa-
ration of the workload, following by an experiment description with further identifica-
tion of statistical aggregation methods of the collected measurements. The proposed
approach suits both described scenarios—inter-model comparisons, and study of the
model effectiveness under different model configurations.

5.1 Design of a Model Evaluation
Referring to [45], we aim to derive a design for a pure laboratory test under the as-
sumption that our test setup is configured to correspond to the real world model and
therefore statistical generalization is adequate. Moreover, we pay more attention to a
system centered approach as we are particularly interested in the “quality” of the results
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Figure 5.1: Design of a model evaluation procedure.

of a model. In this section we will discuss the design of the overall evaluation setup to
perform such an evaluation. In other words we will discuss what steps are needed and
in which order these steps should be executed in order to perform the evaluation. In
Figure 5.1 you can see the proposed “big picture” of evaluation design that is given in
the notion of an activity diagram.

Tests in general, and experiments in particular, are usually intended to answer spe-
cific questions. In our case the question that we want to answer is: “How effective is
the Information Retrieval system?”

Effectiveness is how well the system does what it is supposed to do; its
benefits are the gains deriving from what the system does; its efficiency is
how cheaply it does what it does. [32]

We understand effectiveness as the ability of the Information Retrieval system to re-
trieve relevant documents and to suppress non-relevant documents. In this context we
can assume benefit to be proportional to the effectiveness. The efficiency of the system
is out of scope as it can be evaluated as a part of the user centered approach [45]. As
you can see in Figure 5.1, we start with the question and then perform steps in order to
be able to answer this question at the end.

5.2 Elements of the Evaluation
We will come up with an detailed approach of how to perform evaluation of an In-
formation Retrieval system. Moreover, we will make this approach suitable for the
evaluation of the eTVSM and make it such that it will aid us in choosing an optimal
strategy for the eTVSM configuration. Furthermore, we will propose a short descrip-
tion of the basic phases that we propose for the evaluation process.

The preparation phase deals with preparing all necessary components needed for
performing an evaluation. The actual system evaluation will start in the next phase;
however, it is preferable that prior this all necessary measures are taken. These mea-
sures include getting the workload for the system that will be tested as well as prepa-
ration of the system itself. All internal variables that influence systems work should be
configured.

An important component of any test is the experimental design—the way in which
the test is organized in order to answer our questions that we pose to the system. At
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the experimant phase all the information prepared in the previous phase should be
effectively fed into the system. By saying effectively, we mean the way that allows
completely exploiting all available information, and transforming it into the data array
that is suitable for statistical analysis. We do this by collecting measurements (see
chapter 4) in the course of the evaluation for every single experiment that accumulates
the knowledge about this experiment and that characterizes the system in the way it is
needed for the evaluation.

In the analysis stage we use statistical methods to work with measurements col-
lected during the experiment phase. This is a pure statistical phase, where by statistical
means we try to understand what retrieved results say about the system, and to which
extent they can be generalized. After this stage either we answer the question, or de-
cide that the data processed was not informative enough to aid us in answering the
question—which is also a valid outcome.

5.3 Test Collection
To conduct evaluation of a system we need to come up with an appropriate workload.
In case of Information Retrieval systems this workload is represented in the form of
a test collection. What do we need in order to be able to perform evaluation? To
answer this question we should look on how does a regular interaction of a user with
an Information Retrieval system look like. The user wants to retrieve data from a large
array of documents. To do this he/she formulates information demands in the form
of a query request. Afterwards, the user feeds this query into a system and receives
document from the system which are evaluated by the system as beeing relevant. The
relevance here is considered by the Information Retrieval system. From this simplistic
example it is clear that we need a document collection upon which our system will
perform the retrieval task. Furthermore, we need queries that will initiate retrieval
process and will simulate user requests. This already enables us to make the system
work: perform some actions and return results. However, these results are pointless
without actual users deciding whether documents retrieved by the system are really
what he/she was looking for. To be able to judge the work of our system we need to
have relevance judgments or relevance assessments that can be seen as the following
function:

rel (d, q) ∈ [0, 1]

where d is a document from our document collection and q is a query. In general this
function is defined on the interval from zero to one. “0” relevance means that this
document is absolutely not related to the query, and “1” means that this document is
absolutely related to it. Other values in the interval reflect upon the relevance level.
As a special case we can work with the rel function that is defined as returning values
which are members of the set: {0, 1}. At the end these three components: document
collection, queries and relevance judgments form a test collection. We will now de-
scribe each of these components.

Document Collection

There are plenty of documents available on the web: news articles, electronic libraries,
web pages. All of them suit for our purpose. Alternatively it is possible to do some
simulation experiments using pseudo-documents which are generated in some fashion
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(perhaps involving Monte Carlo techniques) [32]. This kind of simulation of course
has its role and can aim answering specific research questions. But, in most cases it is
easier and better to use genuine documents.

Queries

The situation with queries is more challenging than in case with documents. And
there are number of reasons for this. If we stick to the idea of simulating real world
conditions, we need to obtain real queries. The problem with genuine queries is that
it is hard to trap them as they exist for a short period of time and the location of such
request acts is usually sparse. But this is nothing in comparison with the actual time
needed to collect the queries that will be targeted for the use with acquired document
collection. The major challeng is: Can we guarantee that genuine queries will at least
target the topics of the documents in such collection? Here arises a strong necessity
in artificial queries construction. Such artificial queries may vary in their degree of
realism; the main point is that they should exploit the document collection properties.
The problem here is that we do not really know what are the important characteristics
which we should be trying to reproduce [32]?

It is critical to understand the importance of queries selection. These are the queries
that will initiate retrieval process of the evaluated system. Thus, obtained queries col-
lection should be able to numerously exploit all aspects of the retrieval model to allow
statistical generalization on results. In order to achieve this goal queries should be
formed to be matched to the most of documents from the document collection and
carry different levels of relevance to these documents.

Relevance Judgments

Effectiveness, as we have defined it, is good for the understanding of what is happening,
but is definitely not sufficient as a formal basis for an experiment. It still remains
unclear how can we come up with appropriate relevance judgments? As the output of
the Information Retrieval system is targeted for the human use it is only the user who
can make such judgments. The next question which arises is which user’s judgments
can be considered correct? Quite often people have different preferences and different
point of views on common issues. Therefore, relevance judgments cannot be done by
a single person but should be performed by a group of people simultaneously on the
same query on the same document collection. Furthermore, the estimated measured
parameter should be obtained as the mean value over calculated measurements from
all the judges. First of all this approach allows us to construct confidence interval for
the measurement estimator and make further statistical reasoning on the number of
the judges being sufficient. Also, we can classify queries that cause judges to provide
sparse relevance assessments.

Relevance judgments can be considered as a bottle-neck of the overall test collec-
tion creation process. Ideally, relevance judgments should be made for each document
upon each query. Considering the fact that each query-document pair is judged by sev-
eral people the amount of work needed to be done explodes. Additionally, by assuming
an ideal case when judgments are made on the full content of the document this work
can be out of manageable scope for an experimenter. Due to this reason we advise to
take a look at existing test collections that were used for other Information Retrieval
experiments and are publicly available online.
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5.4 Existing Test Collections
By now, it should be clear that a test collection creation itself is a challenging task.
Additionally, failing to come up with representative test collection may, and probably
will spoil all further calculations. Therefore, it makes sense to take a look at existing
test collections that have been used in different Information Retrieval experiments and
are publicly available. These collections are already tested and are proven to deliver
usable results. Further, by carrying out evaluation of our system on these collections
we get a chance to compare our system with already available evaluations of other
systems on these collections.

Classical test collections can be considered those that were used in the first exper-
iments of Information Retrieval and still appear in the literature as those proved to be
useful in the past. In Table 5.1 you can find a list of selected commonly known test
collections:

Name #Docs #Queries Size [MByte]
ADI 82 35 0,04
Time 425 83 1,5
Medline 1033 30 1,1
Cranfield 1400 225 1,6
CISI 1460 112 2,2
CACM 3204 64 2,2
LISA 5872 35 3,4
NPL 11429 93 3,1

Table 5.1: Classical test collections.

Test collections provided in Table 5.1 are available online and include documents,
queries and relevance judgements as discussed above.

In the next category we distinguish test collections that appeared later. These col-
lections are usually larger in size. The first one that can be classified to this category
is Reuters-21578. It consists of 21578 documents and is the ancestor of Reuters-22173
[55]. These collections are approximately 20Mb in size. Long time Reuters-21578
was the most widely used collection for text categorization evaluations, but now the
situation seems to change in favor of larger collections such as Reuters Corpora Vol.1
and Reuters Corpora Vol.2. Though all these test collections were originally designed
for Information Filtering evaluations and thus have no queries provided for conduct-
ing Information Retrieval evaluations, they are widely used for retrieval evaluations as
well. An approach for creating proper queries is described in [55]. Also, during TREC
2002 [3], 50 search topics (test queries) were developed on Reuters Corpora Vol.1 for
the filtering track. They can be applied for testing ad hoc searches [6]. Reuters-21578
is available for download on the web [2], while Reuters Corpora Volumes one and two
are available from NIST, the National Institute of Science and Technology. Other often
used test collections are available from National Institute of Informatics [1].

Finally, we want to draw your attention to test collections provided by TREC [3].
The Web research collections are distributed by the University of Glasgow for research
purposes only. In order to receive copies of one or more of these collections, you
must sign an agreement with the University of Glasgow and pay a contribution to the
University’s various costs in preparing and distributing the data. These collections and
contribution amounts are provided in Table 5.2:
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Name Size [GByte] Fee
WT2g 2 £250
WT210g 10 £400
.GOV 18 £400
.GOV2 426 £600

Table 5.2: TREC test collections.

5.5 Experimental Design
To support the procedure proposed in Figure 5.1, the experimental design has to bind
the preparation phase with available workload, a configured system and acquired mea-
surements. Most of such existing experiments use just one set of requests/queries to
evaluate or compare a number of systems. It is called “matched pairs” procedure [32],
when the efficiency of the systems is compared on the same request. Moreover, there
is a clear statistical reason for such approach. Any statistical significance testing will
be much more efficient with this method. Again, this approach is oriented to decrease
the influence of the bottle-neck of the whole evaluation process which is the amount of
requests. With this approach it is possible to reuse the requests decreasing the need in
the larger number of distinct requests. Therefore, the experimental design can be quite
simple. Each request/query is searched against every system or every system configu-
ration. Since the searching part of the system is controlled by simple rules, there is no
problem in relation to replicating searches or the order in which the systems are tried
[3]. The only matter of convenience in case of a single system evaluation is performing
the evaluation for the whole request set for a single configuration, further reconfiguring
the system and performing the complete course of evaluation for a new setup.

5.6 Statistical Comparison Justification
So far we have came up with measurements that characterize Information Retrieval
model effectiveness (see section 4.1) and we have came up with an evaluation design
(see section 5.1) that incorporates the collection of these measurements. In this section
we will discuss approaches of statistical analysis of collected measurements. There
are two approaches: The first aims to select the best out of two systems. These can
be different systems or the same system being evaluated in different configurations.
The second approach is a test, which is designed to check the level of significance in
the difference of effectiveness of two systems. This test is known as t-Test [44] in
statistics. Furthermore, proposed statistical methods can be applied to all presented
measurements. Interpretation of results, however, depends on the comparison order of
specific measurement.

5.6.1 Assumptions
Prior to starting statistical evaluations on retrieved measurements we will make some
assumptions on the nature of the data processed. The key assumption is that the mea-
surement values of Information Retrieval systems are normally distributed. This as-
sumption follows immediately from the way these measurements are collected. The
observed precision, recall, F , and other measures are obtained through averaging mea-
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surements obtained by different people. Therefore, the Central Limit Theorem [57]
comes into play: Be (Xi)i∈N a sequence of independent and identically distributed
(iid) random variables with actuarial expectation µ = E [Xi] ∈ R and variance σ2 =
V ar [Xi] ∈ R. We can then define:

Sn =
1
n

n∑
i=1

Xi Zn =
Sn − µ√
σ2n−1

Fn(t) = Pr [Zn ≤ t]

Here, Zn is “standardized” Sn. Being Fn(t) the distribution function of Zn, then

Fn
d→ Φ

as n →∞. Here Φ is the distribution function of a normal distribution with mean value
0 and variance 1. Therefore, we can assume our measurement as being a realization of
a random variable that has normal distribution with unknown parameters µ and σ2.

5.6.2 Comparing Two Systems
In this section we will provide an approach for comparison of Information Retrieval
systems. We will restrict our method to the case of comparing two systems. As already
mentioned, these can be completely different systems or the same system evaluated
under different internal configurations. We use the above stated assumption of observed
measurement being iid for both systems. Further, let µ1 and µ2 respectively be the
true measurement value expectations for test-systems A and B. The key idea of this
comparison method is to find a confidence interval Iα for the difference µ = µ1 −
µ2 and a given confidence level α. µ can be estimated through µ̂ (the mean value).
Figure 5.2 shows possible outcomes for µ̂ including the confidence interval.

a)

b)

c)

0

0

0

µ̂

µ̂

µ̂

Figure 5.2: Possible outcomes for µ̂ confidence interval.

There are three different outcomes when comparing two systems for difference in
their mean values of the observed parameter. Outcome (a) corresponds to the case
when system B is significantly better than system A, while outcome (b) will mean
that system A is significantly better than system B. In case of outcome (c) a clear
distinction is not possible. In this case further measurements needs to be made until
the confidence interval does not contain 0.

To reconstruct the confidence interval we will use Paired-t confidence interval [41].
It is used in Student’s t-test for the statistical significance of the difference between two
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sample means, and gives confidence interval for the difference between two population
means. To the already discussed assumptions one should add the one that the number
of replications (experiments) is exactly the same for both systems (observations are
“paired”—measured for the same input for different systems). With these assumptions
the random variables

Zi = Xi − Yi

with observations zi = xi − yi are iid. This allows us to compute:

ẑ(n) =
1
n

n∑
i=1

zi S2(n) =
1

n− 1

n∑
i=1

(zi − ẑ(n))2

as unbiased estimations of E [Z] and V ar [Z]. Now we can construct α level confi-
dence interval as:[

ẑ(n)− tn−1,1−α
2

√
S2(n)

n
, ẑ(n) + tn−1,1−α

2

√
S2(n)

n

]
Here, t is the quantile of the Student-t distribution [26].

In case the number of observations differs for both systems we can use a modified
procedure for confidence interval construction. This procedure is known as Welch
Procedure [16]. It assumes that n1 needs not be equal to n2:

x̂(n1) =
1
n1

n1∑
i=1

xi ŷ(n2) =
1
n2

n2∑
i=1

yi

S2
x(n1) =

1
n1 − 1

n1∑
i=1

(xi − x̂(n1))2

S2
y(n2) =

1
n2 − 1

n2∑
i=1

(yi − ŷ(n2))2

Then we compute the estimated degree of freedom as:

f̂ =

(
S2

x(n1)
n1

+ S2
y(n2)

n2

)2

(S2
x(n1))

2

n2
1(n1−1)

+ (S2
y(n2))2

n2
2(n2−1)

Finally we compute the confidence interval for µ̂ = x̂(n1)− ŷ(n2) as:

uu,l = µ̂± tf̂ ,1−α
2

√
S2

x(n1)
n1

+
S2

y(n2)
n2

f̂ is usually not an integer, therefore one should look at neighbored integers when
finding tf̂ ,1−α

2
and pick the larger one.
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5.6.3 Significance Test (t-Test)
In the previous section we have discussed an approach for comparing two systems.
This approach can be extended in a way to determine the level to which system A out-
performs system B. This kind of analysis can be performed with the help of statistical
test, and to be more precise—the t-Test [41]. The evaluation that was discussed in the
previous section should be continued to the point when the confidence interval for the
observed parameter does not contain 0. This means that there is no need to perform
all experiments (feed in all queries), but continue evaluation to the point when clear
distinction can be made. However, the number of queries we posses might not be suf-
ficient for the experiment to deliver any results. This might be the case when using test
collections proposed in Table 5.1. In this case one might use the approach proposed
in this section. It will always deliver results, but again the level of significance will
depend on the amount of information processed in the experiment.

Again, we have observations of the tested measurement for both systems. Xi for
the system A and Yi for the system B. As we have explained in the assumptions
section 5.6.1:

Xi ∼ N(µx, σ2
x) Yi ∼ N(µy, σ2

y)

This gives us possibility to construct a test. The null hypothesis is H : µx − µy ≤ d0,
or that the difference of expectations for the observed parameter is less than some
tested value d0. The alternative hypothesis is that this difference is larger than tested
value d0 meaning that system A performs for this parameter better than system B,
K : µx − µy > d0. Therefore, the aim of the test is to reject H and to confirm K to
some significance level. According to the t-Test we reject H when:

T > tn1+n2−2,1−α (∗)

where n1 is the number of experiments for system A and n2 is respectively the number
of experiments for system B. In most cases n1 = n2 = n. However, they need not
to be equal. α is the significance level to which we test d0. t is the quantile of the
Student-t distribution [26] and T is our test statistics which is obtained as:

T =
X̄ − Ȳ − d0√(

1
n1

+ 1
n2

)
σ̂2

where X̄ and Ȳ are the arithmetic averages of the observed parameter for both systems.
And σ̂ is the standard quadratic failure for the random variable Xi − Yi. Because T is
calculated using random variables, T itself is a random variable. It can be shown that
T has a Student-t distribution:

T ∼ tn1+n2−2

where n1 + n2 − 2 is the degree of freedom used in the Student-t distribution. The
last thing we need in order to be able to perform all the calculations is the method of
calculating σ̂2. σ̂2 is the estimator of the variance for the random variable Xi − Yi and
can be obtained as:

σ̂2 =
(n1 − 1) S2

x + (n2 − 1) S2
y

n1 + n2 − 2
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where S2
x and S2

y are the estimators of the variance of random variables Xi and Yi. σ̂2

is used to compute test statistics in two-sample pooled t-Test when number of obser-
vations for both systems differs [41]. The formula to obtain estimator of the variance
was already provided in section 5.6.2.

With this approach an experimenter is able to vary parameter d0 which specifies the
level to which system A outperforms system B in evaluated parameter and the α level.
Also, it is possible to get the corresponding α level for the tested data by calculating
test statistics and solving inequality (∗).

There is no such thing as a watertight method for evaluating an Information Re-
trieval system [32]. Any existing approach to evaluating or comparing Information
Retrieval systems will have to deal with heuristics to some extend only for the reason
of this process been highly dependent on human factor. Researchers in the Information
Retrieval field have devoted a significant amount of time in developing good, standard-
ized evaluation techniques. The approach proposed here is a standardized approach
suitable for a typical Information Retrieval model evaluation. By typical, we mean
system that suites common work scenario described in section 5.3, and which evalua-
tion design can be adjusted to the general framework proposed in section 5.1.



Chapter 6

Themis Implementation

In this chapter we will discuss our eTVSM implementation. Of course, the eTVSM
implementation itself is essential, however, we see the desired system more like a
framework for Information Retrieval models implementation. In other words, we want
our system to be a well-defined support structure in which other Information Retrieval
models can be organized and developed. This should aid the development of new In-
formation Retrieval models, which are not yet supported by the system and facilitate
evaluation and comparison of models through a common testing component.

6.1 What is Themis?
We have chosen “Themis” as the name for our Information Retrieval framework. In
mythology, Themis was the Titaness of order and justice, her word was seen as law.
Themis is depicted as the blindfolded goddess, seated upon her throne, carrying a sword
and a scale. The blindfold symbolizes her impartiality in judgment and setting reward
or penalty. The scale was used to measure the deed at hand, and the sword was used to
deliver justice.

Figure 6.1: Themis framework logo.

These are the features we expect from an Information Retrieval model. We want to
be impartial for setting reward or penalty to terms in a document in a form of weights.
At the end we aim to derive a measure of document relevance to assign appropriate
rank to each document according to a query. Themis is an in-database data-structure
with clear access interface. This data-structure is optimized for storing English natu-
ral language document models and performs document similarity judgments based on

45
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the enhanced Topic-based Vector Space Model. As well it includes a database imple-
mentation of other fundamental Information Retrieval models, such as VSM. Future
implemented Information Retrieval models should correspond to Themis interface and
might use the common functionality provided by the framework for their benefit.

6.2 Technology
The implementation technology choice was mainly driven by the following factors:

• Efficiency. The selected technology should provide efficient algorithms for han-
dling common Information Retrieval model tasks like sorting, fast key record
access, etc;

• Price. The price of the technology used should not be a barrier for the end-user.
Preferably the technology should be distributed under the open-source license;

• Compatibility. The system should be deployable on different platforms. The
final implementation should be made to work on multiple computer platforms.

A relational database was chosen for the purpose of acting as a storage container
for documents and document models. Moreover, most of the commonly used meth-
ods in Information Retrieval model are already implemented in relational databases.
The efficiency of these methods is driven by the relational database core competence
in these methods. PostgreSQL was chosen as the technology that meets proposed re-
quirements. PostgreSQL is a free object-relational database server (database manage-
ment system), released under a flexible BSD-style license1. PostgreSQL can run on
most of the platforms like Windows, Mac OS X or Linux. Since our use of Post-
greSQL exceeds just the purpose of a simple storage container, we have decided to
implement the system logics in PL/pgSQL. PL/pgSQL (Procedural Language / Post-
greSQL Structured Query Language) is a procedural language. It closely resembles
Oracle’s PL/SQL language. PL/pgSQL extends SQL to a true programming language,
and allows much more control, including the ability to use loops and advanced control
structures. Though PostgreSQL supports many languages, PL/pgSQL is the only pro-
gramming language installed by default. So, by using PL/pgSQL we are able to express
the framework and Information Retrieval models logics and limit the software instal-
lation on an end user system to just a PostgreSQL server. The programming interface
to the system (Themis API) is written in Java primarily for the reason of compatibility
and licensing cost issues.

6.3 Themis System Architecture
The system architecture is related to component aspect of the structure of a system.
In Figure 6.2 we propose the overall system architecture of the Themis framework.
It incorporates structural variance for a concrete Information Retrieval model which
should allow fitting multiple models into Themis framework. The crawler component
is designed as an external one.

Any Information Retrieval model included in the Themis framework should im-
plement three components. These are the Search Engine and the Document Model

1 Free or open source license that derives from or is similar to the BSD license.
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Figure 6.2: Themis system architecture.

Builder components which implement the algorithmic part of the model. The Docu-
ment Model provides a model specific persistence layer. All together they build up
the Information Retrieval model component. A structural variance on Information Re-
trieval model component should allow unified interaction with Themis environment.
This includes a common interface for models evaluation, interaction with the crawler
as source of document input and model configuration through a common system con-
figuration repository.

Clients are external components or systems that use Themis API to solve their tasks.
Themis API consists of several APIs provided by depicted components. Proposed
system architecture was used as the guidelines for Themis implementation. Now, we
will discuss all active components of the architecture in detail.

6.3.1 Search Engine

The Search Engine component is a part of the Information Retrieval model component.
Its main responsibility is the comparison of documents based on their document models
through obtaining documents similarity values. In Figure 6.3 a system architecture ex-
tract specifying the Search Engine component and passive/active systems with access
types that are relevant to the Search Engine component are shown. The Search En-
gine component provides a Search API to enable access to the Search Engine internal
functionality. The Search API is responsible for:
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Figure 6.3: Themis Search Engine system architecture.

• Query search: performs the document comparison of the target document with all
documents currently stored in the system in the form of document models. Think
of this functionality as of a normal Web search scenario of entering a query and
obtaining a list of relevant documents ordered by their relevance to the query.
The input parameters should be a document identifier (document text or unique
document ID, note that queries are treated as regular documents). Query search
returns a list of relevant documents at specified range;

• Document comparison: returns similarity of two documents according to the
corresponding Information Retrieval model based on two document identifiers
(document texts or unique IDs).

The Search API is used by the Tester component to perform Information Retrieval
model evaluation. The Search Engine component performs its computations based on
the document models which it receives from the Document Model storage. It is im-
portant to understand that the Search Engine only retrieves document models from the
Document Model storage. How these models appear in the storage is not known to the
Search Engine component. The Search API assumes receiving documents or queries
(treated as documents in Themis). To be able to acquire access to the corresponding
document model the Search Engine component uses an Information Retrieval model
API (see section 6.3.2). The Search Engine passes a document to a Document Model
Builder component which ensures the existence of a document model in the Document
Model storage and will reply with the document model unique identifier.

6.3.2 Document Model Builder
The Document Model Builder component is a part of the Information Retrieval model
component. Its main responsibility is the construction of document models as defined
by the corresponding Information Retrieval model. Every Information Retrieval model
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Figure 6.4: Themis Document Model Builder system architecture.

incorporated into the Themis framework is expected to provide an own Document
Model Builder component implementation. In Figure 6.4 a system architecture ex-
tract is show that specifies the Document Model Builder component and passive/active
systems along with access types that are relevant to the Document Model Builder com-
ponent. The Document Model Builder component provides an Information Retrieval
model API which provides the following functionality:

• Document model insertion: constructs a document model for a document so that
it corresponds to the needs of the implemented Information Retrieval model. If
the document model for the incoming document already exists, it gets updated;

• Document model removal: if there is no further need for keeping a document
model in the system this functionality alows the deletion of a document model.

Consumers of the IR model API are the Search Engine, the Tester and the Crawler
components. The Search Engine component communicates with the Document Model
Builder component to ensure that the query document, which initializes the search, is
present in the system in the form of document model. As the prerequisite to a test,
the Tester component might require creation of document models for documents from
test collections that act as the test workload. The Themis framework assumes the ex-
istence of a Crawler component. This component is responsible for the content of the
Document Model storage and its update frequency.

Finally, the Document Model Builder work is configured through the Themis Con-
figuration Data storage. Such a configuration data might include information on, e.g.
stemming algorithm used, whether stopword removal should be applied, etc. In gen-
eral, one might recognize common settings applicable to any Information Retrieval
model, like in case with document preprocessing steps, and model specific configura-
tions. Because Themis was implemented primarily for the reason of evaluation of the
eTVSM, the implementation also includes support for eTVSM ontology (as described
in section 3.1). The eTVSM Document Model Builder component instance constructs
document models based on the data structure stored in the eTVSM ontology storage.
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Figure 6.5: Themis Configuration System system architecture.

The Configuration System component provides access to the configuration parame-
ters of the Themis framework. This includes common and model specific configuration
parameters. External components gain access to the Configuration System through the
Configuration API. Figure 6.5 shows a system architecture extract that specifies the
Configuration System component and passive/active systems along with access types
that are relevant to the Configuration System component. The Configuration API pro-
vides the following functionality:

• Setting common, as well as model specific, configuration parameters in the Themis
framework;

• Accessing common, as well as model specific, configuration parameters in the
Themis framework;

• Add/Edit/Delete functionality for the eTVSM ontology concepts. This function-
ality set completely supports eTVSM ontology data structure maintenance.

The Configuration System has a full read/write access to the eTVSM ontology and
Configuration Data storages to fulfill its tasks.

6.3.4 Tester

The Tester component is responsible for carrying out automatic Information Retrieval
model evaluations, collecting measurements, and aggregating these measurements. In
Figure 6.6 you see a system architecture extract that specifies Tester component and
passive/active systems along with access types that are relevant to Tester component.
The Tester component provides a Test API which provides the following functionality:

• Setting test configuration parameters;

• Accessing test configuration parameters;
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Figure 6.6: Themis Tester system architecture.

• Loading/unloading test collections. This functionality allows loading, editing,
unloading Information Retrieval test collections. Tester component uses IR model
API provided by Document Model Builder component to perform these tasks.
For the description of a common test collection content please refer to sec-
tion 5.3. Test collections are stored in the corresponding storage system;

• Performing tests. Tester component communicates with Search Engine to con-
duct experiments. It uses Search API to initialize search and as a respond obtains
search results produced by a corresponding Information Retrieval model;

• Collecting measurements. The Tester component supports collecting of mea-
surements and their statistical aggregation described in chapters 4 and 5.

The test procedure carried out by the Tester component can be described by the fol-
lowing guidelines: First, the document models for the documents from the target test
collection and the target Information Retrieval model are constructed. Further, the
Tester component collects search results for the target test collection queries. Then, the
measurements and results of statistical aggregations become available through the Test
API. The Test Configuration storage is designed for keeping test runtime configuration
parameters. These include model specific settings, e.g. eTVSM ontology automatic
construction scheme to be used while testing. Basically, these are the settings that do
not influence document preprocessing and work of the Information Retrieval model.

6.3.5 Crawler

The Crawler is treated by the Themis framework as an external component. A crawler
is a program or automated script which browses the document collection in a methodi-
cal, automated manner. A good example of a crawler is a Web crawler which operates
on World Wide Web. In Figure 6.7 a system architecture extract that specifies the
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Figure 6.7: Themis external Crawler system architecture.

Crawler component and passive/active systems along with access types that are rele-
vant to the Crawler component is presented. The Crawler has access to the persistent
storage (Crawler Database) to save results of its work. In this configuration the crawler
discovers new documents by itself, during its work, and provides an API for the exter-
nal components to “suggest” new documents.

In our scenario the Themis framework expects the Crawler to provide natural lan-
guage documents along with their URLs on regular basis. Themis might incorporate
functionality for extracting content bearing part of a document. Document models are
obtained for new incoming documents, while already existing documents get updated.

6.4 Themis Data Model
Above, we have discussed tasks active components of the Themis system architecture
are performing. In this section we will discuss the persistence layer these components
rely on. A data model is a model that describes in an abstract way how data is repre-
sented in an information system, such as Themis.
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Figure 6.8: Themis VSM data model.

Let us start by taking a look at the document model storage for the VSM. For the
description of VSM please refer to section 2.3. The physical schema for the storage
of VSM Document Models is shown in Figure 6.8. The document entity aims to
represent documents which have a VSM document model representation in the sys-
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tem. The url attribute is used to reference the actual location of the document, while
last_update attribute specifies when this document was cached last time from the
specified location. doc_text is the cached document. is_query is a flag used to
distinguish between documents and queries. Finally, the vector length of the document
is stored in the length attribute. This value is stored for performance optimization.
It is possible to obtain this parameter after the document gets cached. Afterwards, we
refer these calculated values while obtaining similarities.

A general search scenario requires obtaining similarity values of a target query
with all documents from the Document Model storage. This happens in two steps:
First, the query is transformed into a query document—including the calculation of the
document vector length. Second, the similarity between the query document and all
other documents is calculated by using the stored vector lengths. Since the calculation
of the vector length is one half of the similarity calculation algorithm, the usage of
stored document vector lengths significantly raises the speed of the calculation.

The document_model entity is used to store document models. Here, doc_id
references a document, weight attribute obtains a word weight value according to
applied weighting scheme. The word access is done through a reference word_id to
the word entity. In Themis, a word represents the smallest information unit. As stated
in section 6.1, Themis is primarily designed for indexing English text documents. This
fact allows us to identify words as sequence of characters between common separator
characters like spaces2. All unique words are then stored as word entities. Further, all
other entities that encapsulate words, would reference the word entity. This forbids
multiplicity on the same word concept representation in the Themis framework.

The inner document product is implemented as a database view—a logical unit that
represents product between each possible document pair in the system. Together with
computation of the length attribute in document entity, the document_product
view covers the algorithm of obtaining VSM similarities.

The Document Model storage is Information Retrieval model specific. The physical
schema for eTVSM Document Model storage is shown in Figure 6.9. The conceptual
difference here, as compared to VSM schema, is the interpretation entity reference in
the document_model entity instead of word reference. Also, document_term
entity was introduced to allow automatic judgments while interpretation selection dur-
ing eTVSM document model construction. For more information on eTVSM docu-
ment model refer to chapter 3. nocc attribute refers to the number of occurrences of
the specific term in the specific document.

Contrary to the VSM case, the eTVSM Document Model storage alone does not
provide enough information for obtaining eTVSM similarities. What lacks are interpre-
tation similarities, which are the part of the eTVSM ontology storage.
interpretation and term entities, as well as word entity discussed before, are
also eTVSM ontology concepts.

The Tester component persistence layer is shown in Figure 6.10. The proposed
physical schema already incorporates IR Test Collection and Test Configuration stor-
ages. Test Collection storage consists of collection, document, query,
relevance and stopword entities. collection entity specifies collection name
and assigns it a unique key. All other entities reference collection to express
their relation to a specific test collection. doc_id attribute of document entity and

2 This fact does not apply to all the languages. E.g., such approach would not be applicable in case
of Japanese or Chinese languages. Especially confusing is Vietnamese, here spaces do not necessary
denote a word break. Other languages exist (like Inuktitut) where a word extracting procedure that relies
on separator characters would result sentences consisting of a single word.
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Figure 6.9: Themis eTVSM data model.

query_id attribute of query entity assign unique entity IDs within test collection.
The relevance entity aims to express relevance between a query and a docu-

ment. The specific relevance entity instance will define that a certain document is
relevant to the specific query in a given test collection. Some test collections specify
suggested stopword list to use while retrieval process. stopword entity is modeled
specifically for these cases, to store suggested stopwords to use while retrieval. The
test and test_cfg entities are designed to be able to distinguish between different
tests. Each test is identified by its name and by parameter values that configure this test.
Initially, two test configuration parameters were proposed. These are the start position
and the number of retrieved documents that identify search results interval to use in a
test. These might be useful if the test is designed to get measurements at a given cut-off
rank.

Finally, test run results need to be stored in order to be able to obtain the desired
measurements. For this reason we have introduced a notion of a run. Basically, run
entity specifies that the test with test_id was performed on the test collection with
col_id. start and finish attributes specify a time span of the test run. Also,
one might specify a description in the descr attribute. The search entity is used
to store results of a run. Additionaly to a run reference, the search entity includes
query_id, doc_id and sim attributes. They specify what similarity value was
obtained for a given query-document pair. The document_map entity specifies the
mapping between document IDs in a test collection and IR model specific Document
Model storage. This is required because Document Model storage IDs might not match
to the ones defined in a test collection, which consequently causes wrong relevance
judgments match.

Now, we will discuss the domain ontology physical data schema (see Figure 6.11)
as used by the eTVSM. For the description of the eTVSM ontology concepts and their
roles refer to section 3.1. Here, the topic entity is used to represent topics of the
eTVSM ontology concept. Together with the map entity, the topic entity defines a
topic map (see section 3.1.1). It is then an algorithmic task to ensure that topic map
is free of cycles. The map entity defines a parent topic to child topic relation in a
topic map and sets the specific link type to this relation. The link type is specified in
the map_type entity. Further, interpretations (interpretation entity) are linked
to the topics with the help of the imap entity. Similarly, terms (term entity) are
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Figure 6.10: Themis Tester data model.

connected to interpretations with the help of the tmap entity. vector and ivector
entities are used to store topic and interpretation vectors respectively. It should be
algorithmically supported to maintain correct topic and interpretation vectors upon any
changes in eTVSM ontology structure as vector values greatly depend on the ontology
graph structure.

While obtaining eTVSM document similarities the interpretation similarities are
required. Similarly to the case with both vector entities the isim entity is used to
store pre-computed interpretation similarities which will be then reused while calcu-
lation of the document similarities. Finally, the word entity is responsible for storing
the smallest Themis information units—words. All the word instances contained in
other Themis entities that were already presented are the references to the word entity.
These are, e.g. the name attributes of the entities presented in Figure 6.11. Also, the
term attribute of the term entity was designed as the array attribute of elements with
type similar to the id attribute of the word entity (e.g. integer). This allows to rep-
resent compound terms (see section 3.1.3) as an ordered list of references to the word
entity. Contrary to the word entity—the stopword entity is used to reference words
that should be ignored while obtaining documnents similarity values. These are the
stopwords that will get filtered out from a document content prior to document model
construction. word_id attribute is a reference to the corresponding word entity de-
signed as a stopword.
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Figure 6.11: Themis eTVSM ontology data model.

6.5 Time vs. Space Complexity Compromise
One of the eTVSM disadvantages is its high computational complexity. An not opti-
mized eTVSM implementation will not be feasible in a real world problem size sce-
nario. The key to the computational problem is that document model consists from
eTVSM ontology interpretations. Once new interpretations appear or old get removed
from eTVSM ontology, document models for all the documents need to get updated.
Also, when computing document similarities, interpretation similarities are used. In-
terpretation similarity computation is itself a complex task with prior obtaining of topic
vectors, what requires non-local study of eTVSM ontology graph structure. In such a
situation one has to start looking for a compromise between additional storage for pre-
computed intermediate values and algorithm execution time in order to obtain a usable
combination of both. Further, one might loose the requirements on data being up-to-
date. Time precious tasks, such as response to a user query input, might be performed
on “old” data which gets periodically updated in a separate process chain.

We want to present our solution that was implemented in Themis. In Figure 6.12 we
propose an integrated view on main Themis process chains. We have applied the eEPC
notation. Here, hexagons represent triggering events, rounded rectangles represent ac-
tivities and shaded rectangles represent information units consumed and produced by
activities. Further, we present the description of three main process chains and their
dependencies:

• Ontology control chain: In this process chain we track changes in eTVSM on-
tology that influence interpretations similarity values. This chain is initialized
by the “domain ontology is changed” event. Further, based on the current do-
main ontology structure we update interpretations similarity values. Interpre-
tation similarities are the pre-computed values that will be used for documents



6.5. TIME VS. SPACE COMPLEXITY COMPROMISE 57

document
construct

document model

document
model is
outdated

new document
is crawled

xor

document
model

constructed

query input
received

get document
model for query

query model
obtained

calculate
similarities
(for search)

search
result is
returned

domain
ontology is
changed

update
interpretation

similarities

interpretation
similarities are

up-to-date

domain
ontology

document
model

interpretation
similarities

Figure 6.12: Themis event-process chains.

similarity computation. Document models do not get updated synchronously
with domain ontology changes;

• Document model control chain: This chain gets initialized by one of two events.
Either a new document gets crawled by the system (“new document is crawled”),
or the timeout since last document model update has expired (“document model
is outdated”). Afterwards, document model gets constructed for the correspond-
ing document based on the current domain ontology configuration. At this point,
document model becomes up-to-date with respect to domain ontology;

• Query search chain: This chain gets initialized by a user entering a search query
into the system. First, a document model for the query is obtained. The differ-
ence with document model construction in document model control chain is that
the document model is not constructed if the query document model is already
present in the system. Here, we assume that the query document model will get
updated on regular bases in document model control chain. Thus, a query model
is constructed inside this chain only if this query was never sent to the system
before. This should decrease response time for already searched queries. After
the “query model obtained” event, the actual document search is performed.

The presented approach was developed with optimization on accelerating response to
user query input in mind. The basic assumption is that domain ontology changes are
seldom activities with small effects. In a regular scenario, one usually start with an
already constructed ontology allowing minor changes to it over time. In such a case,
document model changes are more frequent because of changes in document source
rather than because of ontology changes. Thus, it is heuristically reasonable to reduce
document model update to only the point of time when it gets re-crawled by the system.
Document models are aggregating over time and collectively compose the informative
system value. Therefore, the reconstruction task of all document models upon change
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in the domain ontology in a short time is not feasible. The assumption of seldom
eTVSM ontology changes allows us to store pre-computed up-to-date interpretation
similarity values. This results in to a minimum reduction of computational complexity
for eTVSM documents similarity calculations.



Chapter 7

eTVSM Evaluation

In the previous chapters we have introduced tasks Information Retrieval deals with. We
have looked into approaches that can be applied to solve these Information Retrieval
tasks. Approaches presented in chapter 2 included the VSM and the TVSM models.
Furthermore, we have introduced a novel Information Retrieval model in chapter 3—
the eTVSM. We have provided measurements and methodologies for Information Re-
trieval models evaluation and comparison in chapter 5. Finally, we have provided hints
on implementation of Information Retrieval models, in particular eTVSM, which are
the target for the evaluation design described in chapter 6.

In this chapter we want to use the theoretical knowledge that was presented before
in order to obtain practical results. We will present our evaluations of the VSM and
the eTVSM using different domain ontology configurations. We will limit our presen-
tation to “milestone” eTVSM evaluations and configurations only. We have performed
many more evaluations and configuration to incrementally raise the effectiveness of
the eTVSM, however due to time and space constraints it is reasonable to put the focus
on configurations which either significantly improved the effectiveness or which unex-
pectedly decreased the effectiveness of the model. Finally we will also compare our
evaluations with some other results from the literature, especially with the results for
the Latent Semantic Analysis (LSA) model.

7.1 Evaluation Setup

In this section we pursue two goals. First, we want to present the evaluation setup which
is used for our evaluations. This includes identification of the test collection, the spec-
ification of the document preprocessing steps and their configurations, and document
model creation particularities. Another, very important goal that we aim to fulfill is to
make evaluations carried in this work comparable with other model evaluations done
by other researchers. The matter is that by having access to such an internal model
configuration it is possible to provide same evaluations of other models with similar
configurations. This will make evaluation results comparable. Unfortunately, our own
experience shows that researchers usually provide final results but neglect stating all of
the common configuration parameters that greatly influence presented results. At the
very end, it is not important which Information Retrieval system performs better on the
evaluated measurement parameter, but which performs better in the same configura-
tion environment. E.g. evaluations show that measurement values differ considerably

59
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when incorporating stopword removal (with most common stopwords) as compared to
no stopword document preprocessing for the same Information Retrieval model. Same
applies if evaluations are done on different stopword sets which are disjoint or inter-
sect instead of being totally equal. Therefore, we are able to perform true inter-model
evaluations and comparisons. It’s our aim to give other researchers the opportunity to
compare their model effectiveness with our results under the same configuration.

To perform our evaluations we will use the Time test collection which was already
presented in section 5.4. The Time test collection consists out of 425 documents and
83 queries. These are the articles from the Time magazine. The reason for selecting
such a small collection is that we had not much practical experience with eTVSM be-
haviour and therefore we prefer a small document model evaluation cycle for eTVSM
evaluation under different ontology configurations. It was already mentioned in sec-
tion 3.5 that the domain ontology configuration is a heuristic task which greatly in-
fluences model performance. Also, it has to be mentioned that the Time collection
consists of about 250000 words and about 20000 unique words. This gives a huge
variety of possible eTVSM ontology configurations—what initially is the target of our
evaluation. Aside of this, there are many Information Retrieval model evaluations for
Time test collection which are available in the literature [10, 22, 50, 34, 56, 35] for
comparison.

At the document preprocessing stage there is no letter case distinction. All the
text is considered to be in lower case. This does not allow distinction between such
terms like it (a common stopword) and IT (abreviation for “Information Technology”).
However, this choice was carried out not only for the sake of simplicity, the Times test
collection itself does not provide character case distinction. The stopword set which is
used for stopword removal is the original Time collection stopword set. It is provided
as a part of the Time test collection in a separate file. For the stemmer we have used
the Porter stemmer [47].

A weighting scheme is required to assign weights to stem words if using the VSM,
or interpretation weights to interpretations in eTVSM (here, document model weights
are assumed, not domain ontology interpretation weights which are all set to be equal
to one). In our evaluations we have used a plain concept occurrence as the measure
of its weight in the document. A separate attention requires the eTVSM document
preprocessing. While our evaluations we have used the document model creation ap-
proach described in section 3.3 as the guideline. To make the document model creation
process more sophisticated we integrated stopword removal as not including stopword
terms in eTVSM ontology, this approach was already discussed. Furthermore, stem-
ming of words is performed only if the word is not found in the domain ontology,
afterwards term search attempt repeats. Finally, the longest matching term principle is
used. All these principles were already discussed in section 3.5.

7.2 VSM Simulation with eTVSM
In chapters 2 and 3 we have shown the evolution of the VSM over the TVSM to the
eTVSM. The eTVSM operates on the vector space defined by the modeled topics and
allows more degree of freedom as compared to TVSM by introducing intermediate
interpretation concepts. Nevertheless, all of the mentioned models are vector based
models. Because the eTVSM operational vector space is configurable through the used
ontology, VSM can be seen as the specific case of the eTVSM. In order to simulate
VSM behavior eTVSM must operate on a specially configured eTVSM ontology. Such
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ontology must result in the operational vector space which is compareable to the one
of the VSM.

In this section we will show how it is possible to simulate the VSM with the eTVSM
and we will perform evaluations of both models. The practical goal that we pursue
by such evaluations is to obtain a VSM evaluation measurement which can be later
compared to further eTVSM evaluations. Also, we are able to partly check our eTVSM
implementation and obtain first eTVSM evaluation measurements. Finally, we can use
the methods proposed in section 5.6 to show the insignificant difference between both
these models evaluation measurements as a proof of their equivalence.

7.2.1 Formal Simulation eTVSM Ontology Derivation

In this section we will derive an approach for a domain ontology configuration to ensure
an eTVSM configuration which behaves identical like the classic VSM. Under identi-
cal Information Retrieval models we understand the models which produce identical
similarity values for any given pair of documents. The eTVSM document similarity
function which was derived in section 3.4 is defined as following:
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Now, let us assume interpretation similarities to be such that:
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Under such conditions
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Interpretation similarities assumption will leave only the items in our sum for which
k = l. Finally, following the same considerations as in the previous step we obtain
eTVSM similarity function as:
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This function resembles the function for obtaining VSM document similarities:
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with the only difference of having document interpretation weights instead of document
stem word weights. However, the principles of obtaining these weights are similar in
both models (this can be plain document occurrence or tf-idf approach discussed in
section 2.3 or any other). So, by ensuring interpretation concepts from the domain
ontology of the eTVSM to be identical to the word stem concepts from the VSM, we
ensure models to be identical. This, as well as interpretation similarity assumption
stated before, can be realized by an ontology modeling approach shown in Figure 7.1.

T 1

Stem 1

T 2

Stem 2

T N

Stem N

Figure 7.1: VSM simulation eTVSM ontology.

Such a modeling unit which consists of a topic, an interpretation and a term should
be created for each word stem recognized by the VSM. Term is exactly the VSM word
stem, while the interpretation and the topic are “dummy” concept instances. The fact
that there are no inter-topic relations ensures interpretation similarities to be orthogo-
nal towards each other. Also, eTVSM interpretations now correspond to VSM word
stems with one-to-one relation. An eTVSM which operates on an ontology which was
constructed using the principles shown in Figure 7.1 simulates VSM.
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Figure 7.2: VSM simulation recall-precision plot.

7.2.2 Evaluation of VSM Simulation with eTVSM

The preparation phase of our evaluation includes loading of the Time test collection
into Themis through the Tester component. The comparison procedure requires us to
perform evaluation of both Information Retrieval models on the same test collection.
In case of eTVSM we require to configure a domain ontology following the principles
that were presented and theoretically grounded in section 7.2.1. The VSM does not
require any additional configuration as long as all preprocessing steps are configured
analogously to the eTVSM.

Figure 7.2 presents the recall-precision plot as it was described in section 4.2. Here,
we have plotted the average over all queries (recall, precision) points for the corre-
sponding measurements taken at a given cut-of rank r ∈ [1, . . . , 100]. Both plots (for
VSM and eTVSM) coincide to give a path shown. Minor differences in measurements
might be the result of rounding performed along the calculations, and different calcu-
lation schemes applied for both models. In general, it is possible to state that both such
models are identical. Also, as you can see, the general inverse relation between recall
and precision remains.

We have constructed the precision at standard recall levels plots (this was described
in section 4.2) for both of our evaluations. They are presented in Figure 7.3. The visual
comparison of both plots also speaks for the identity of both evaluated models. These
first evaluation measurements we will take as the starting point for our comparisons
with the further eTVSM evaluations we are going to perform in next sections. We
intend to improve these measurements by introducing inter-term semantic relations in
domain ontology used by the eTVSM.
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Figure 7.3: VSM simulation precision at standard recall levels plot.

7.3 Synonymy eTVSM
We have taken the name “synonymy eTVSM” for an eTVSM which operates on an
ontology designed to represent synonymy term relations. The eTVSM ontology total
synonymy modeling pattern is presented in Figure 7.4. We expect to use external syn-
onymy knowledge for an automatic ontology construction. Of course, we expect new
evaluation results to outperform the ones for VSM we have obtained so far, since the
resolution of synonyms should help in detecting new similarities between terms which
haven’t been recognized before.

Automobile

automobile machinecar

motorcarauto

Figure 7.4: eTVSM ontology total synonymy modeling.

Synonymy is the fact that many equivalent or closely related meanings can be con-
veyed by distinct words. This means any strategy that simply uses string matching to
select documents which contain terms also found in the user’s query is bound to miss
many relevant documents. These are the documents that use another terms with the
similar meaning as the terms specified by the user. Synonyms (alternative names for
the same concept) are well-known feature of natural languages. Together with spelling
differences synonym variations cause many problems in Information Retrieval. If an
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Information Retrieval system is not capable of synonymy recognition it will most prob-
ably see no similarity in document containing terms like car and auto. Standard ap-
proaches to solve this problem are query expansion mechanisms [9, 31, 43, 20]. A
query expansion-enabled interface will take as input a given search term, look for syn-
onyms in the controlled vocabulary, and return documents that match either the search
term or any of its synonyms. In our case, we will use an somehow similar approach;
conveniently eTVSM already incorporates a container for synonymy vocabulary which
can be expressed as a part of the ontology used by the eTVSM. Intuitively, integration
of synonymy into Information Retrieval should increase model effectiveness. Later, in
this section, we will check our guesses by performing concrete evaluations.

7.3.1 WordNet as Source of Semantics
We have already shown how it is possible to simulate a VSM with an eTVSM in sec-
tion 7.2. This can be achieved by applying a specially modeled “dummy” ontology.
Such ontology assumes all terms to be orthogonal—inter-independent. However, the
eTVSM potential is hidden in its ability of representing term relations and to model
term meaning relations as used by humans. For a small sized ontology, like one shown
before in Figure 3.14 concept relations can be modeled manually. Similar examples
of an ontology modeling can be found in [36]. But, such approach does not suit our
needs. It is not feasible to model semantic relations manually for some thousands of
terms (which are potentially present in Time test collection or in any real world sce-
nario) in a short time. Moreover, the complexity multiplies with the need of ontology
re-modeling for eTVSM re-evaluation with applying different ontology modeling ap-
proaches.

An alternative to manually modelling an ontology is the reuse of existing ontologies
or lexicons. WordNet is a semantic lexicon for the English language. It groups English
words into sets of synonyms called synsets, and it provides short, general definitions,
and records the various semantic relations between these synonym sets. WordNet was
created and is being maintained at the Cognitive Science Laboratory of Princeton Uni-
versity under the direction of psychology professor George A. Miller. Development
began in 1985. Since then WordNet has grown to include 117597 synsets which in-
clude a total of 207016 word-sense pairs. WordNet can be interpreted and used as
a lexical ontology in the computer science sense. In our scenario, we want to reuse
this accumulated knowledge. We aim at an automatic domain ontology construction
by reusing the WordNet. This can be achieved by extracting terms and their semantic
relations from the WordNet lexicon and loading them into an ontology suitable for the
eTVSM.

The WordNet database and software tools have been released under a BSD style li-
cense and can be downloaded at [4] and used freely. The database can also be browsed
online [7]. There exist many related projects, primarily artificial-intelligence solu-
tions and access APIs. One of these APIs is of particular interest to us. This is the
PostgreSQL API proposed within WordNet SQL Builder project [5]. We have used
WordNet version 2.1 and loaded it into a PostgreSQL database schema to unify the
domain ontology and WordNet storage. To allow an automatic ontology construction,
a transformation script was written which mapped WordNet concepts to ontology con-
cepts. In Figure 7.5 we provide the WordNet schema extract proposed by WordNet
SQL Builder project which is relevant to our needs.

The synset entity is used to store WordNet synsets. The semlinkref entity is
used to define semantic links between any pair of two synsets. The semantic link type
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sense

PK,FK1 wordid

PK,FK2 synsetid

casedwordid

rank

lexid

tagcount

word

PK wordid

lemma

synset

PK synsetid

pos

categoryid

definition

semlinkref

PK,FK1 synset1id

PK,FK2 synset2id

PK,FK3 linkid

linkdef

PK linkid

name

recurses

Figure 7.5: WordNet SQL Builder schema extract.

is defined in the linkdef entity. The word entity is used to store terms—these are
terms in the sense of the eTVSM as presented in section 3.1.3. These terms are ordered
to appropriate synsets through the sense entity. Each term can appear in multiple
synsets, as well as each synset can include multiple terms. rank property of sense
entity is used to assign a rank to a term-synset relation. E.g. term car is assigned to
five synsets (has five senses). The most highly ranked sense is “a motor vehicle with
four wheels; usually propelled by an internal combustion engine” which is assigned a
tagcount of 598. The next ranked sense (tagcount of 24) for the term car is “a
wheeled vehicle adapted to the rails of railroad”. tagcount is a measure of term
sence usage frequency. Synset descriptions are defined in the definition attribute
of the synset entity. Finally, the pos property of a synset entity is used to define
a part of the speech for the terms which are grouped in the synset.

7.3.2 Synonymy eTVSM Ontology Modeling Approach
In this section we want to present a possible principle of automatic domain ontology
construction which exploits the synonymy semantic relations given by the WordNet.
This approach has caused our Information Retrieval model effectiveness measurements
to improve as compared to the VSM evaluation. The starting point for our synonymy
eTVSM approach is the “dummy” ontology as already presented in section 7.2.1. The
prior approach did not assume any semantic relations between terms. We will now start
to narrow this gap by automatically assigning synonymy relations from the WordNet
between terms recognized while the evaluation presented in section 7.2 when we were
simulating VSM with eTVSM. The following pseudocode for adding new terms from
the target test collection into the synonymy ontology has to be applied on each term
recognized in the document base:

1: IF term (T) EXISTS IN eTVSM ontology RETURN
2: ELSE
3: IF term NOT IN WordNet
4: create dummy eTVSM ontology for term (T)
5: ELSE
6: select most highly ranked synset/sense (S) for term (T)
7: create linked topic and interpretation for synset (S)
8: create term (T)
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9: link term (T) to interpretation (S)

In case when a term was not found in the WordNet database (line 3) the “dummy”
ontology consisting of linked topic, interpretation and term (like in the case of the VSM
simulation) has to be be created (line 4). Otherwise, we create a new term and link it to
a new or existing most highly ranked WordNet synset equivalent interpretation. This
procedure has to be repeated for each term in the following priority order: noun, verb,
adjective and then adverb. This assures that we check all parts of the speech in the
order of most common WordNet synsets. This is required because some terms can
represent different parts of the speech, e.g. likely can be either adjective or adverb.
First, we look for the most content bearing parts of the text—nouns, further moving to
the term senses that have less content weight. Such procedure assures that each term
is present only once in the resulting eTVSM ontology with exactly one sense (one link
to interpretation). Moreover, in each case we take only the most highly ranked synset
(most common term sense). Finally, all these measures result in an eTVSM ontology
free from semantic non-determinism which extracts most of the synonymy knowledge
from WordNet.

7.3.3 Evaluation of Synonymy eTVSM
The preparation phase of synonymy eTVSM evaluation as compared to VSM simu-
lation differs only in a model preparation activity, in particular the eTVSM ontology
construction. Figure 7.6 presents the precision at standard recall levels plot for the
synonymy eTVSM evaluation (syn eTVSM) superposed on the same type plot for the
VSM evaluation (VSM).
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Figure 7.6: Synonymy eTVSM precision at standard recall levels plot.

Visually the synonymy eTVSM has a higher precision at all eleven standard recall
levels. Furthermore, we will perform a comparison of the VSM and the synonymy
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eTVSM following the procedure proposed in section 5.6.2. For the measurements,
upon which to perform comparison, we have chosen precision and recall measure-
ments. These measurements were collected for each query from the test collection at a
cut-off rank equal to the number of relevant documents proposed by the test collection
for this query. In such a setup the number of relevant documents and the number of
documents retrieved is always equal. Thus, precision is equal to recall, resulting in a
single measurement value for each model-query pair. Measurements were collected for
both models.

According to the comparison procedure we have constructed confidence intervals
for a difference in compared measurement values. We have decided to construct confi-
dence intervals for µ = µ1−µ2 where µ1 is the mean measurement value for synonymy
eTVSM and µ2 is the mean measurement value for VSM for different confidence levels
α. The computational results are provided in Table 7.1. The intervals were obtained
based on computed estimators ẑ = 0.0177 and S2 = 0.0285. According to the applied
comparison procedure we can conclude that synonymy eTVSM performs better than
the VSM with respect to the compared measurement value when confidence interval is
a positive interval not containing zero. In Table 7.1, you can find that such a state is
achieved when confidence level α is raised to 0.35.

α t82,1−α
2

Iα

0.01 2.6371 [−0.0312, 0.0665]
0.05 1.9893 [−0.0192, 0.0545]
0.10 1.6636 [−0.0131, 0.0485]
0.15 1.4531 [−0.0092, 0.0446]
0.20 1.2920 [−0.0062, 0.0416]
0.25 1.1586 [−0.0038, 0.0391]
0.30 1.0430 [−0.0016, 0.0370]
0.35 0.9400 [ 0.0003, 0.0351 ]

α—confidence level, t—Student-t distribution quantile,
I—confidence interval.

Table 7.1: VSM and synonymy eTVSM comparison—confidence intervals.

The statistical generalization concludes that in a sequence of similar comparisons of
the VSM and the synonymy eTVSM on similar test collections the synonymy eTVSM
will perform better with respect to compared measurement value on average in 2 out
of 3 cases. In 1 out of 3 cases it will be not possible to give statistically grounded
preference to the synonymy eTVSM over the VSM.

7.4 eTVSM with Semi-automated Ontology
The previously presented Synonymy eTVSM assumes that we define sets of terms; all
the terms inside such set are considered to be completely interchangeable in a seman-
tic sense. In synonymy eTVSM all the terms from one such set get connected to one
corresponding interpretation and further to a topic. So, terms can be either considered
totally similar or totally not similar. However, eTVSM allows expressing intermediate
similarity levels between terms by setting relations between topics on the topic map
level. This opens new possibilities for expressing semantics to further improve Infor-
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mation Retrieval effectiveness of eTVSM. This is, however, a hypothesis that should
be checked.

7.4.1 Why Semi-automated?
Of course, a completely automatic approach to eTVSM ontology construction which
assures high model effectiveness is a desired solution. This would mean that an eTVSM
based system can be deployed and configured to right away deliver highly effective re-
sults. These results would exploit term semantic relations obtained from WordNet and
are expected to compete or even outperform any existing Information Retrieval system.
We have performed numerous evaluations which included different topic map config-
uration patterns. Just to give an idea, we have tried to load hyponymy and meronymy
relations both and each separately, we have used the domain term relation presented in
WordNet, we have tried the approach presented in [36] for automatic eTVSM ontol-
ogy loading from WordNet. The results of our attempts are summarized in Figure 7.7.
Here, with dashed lines, we have presented the general guiding lines for the precision
at standard recall levels plots we have obtained during our evaluations.
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Figure 7.7: Guiding lines for precision at standard recall levels plot in case of eTVSM
with automated ontology evaluations.

It is visually distinguishable that our totally automated ontology construction ap-
proaches result in a model that performed worse than synonymy eTVSM or even VSM.
The conclusion, which needs to be done is that it is hard to find a full automated ap-
proach that provides good results. Moreover, even if we find such an approach its
benefits are doubtful for the use on other test collection or in general case. The reasons
for this, as we can identify them, are:

• WordNet is a general purpose ontology. Specific domain knowledge is not present
in WordNet; therefore, it has no chance to get into a domain ontology. E.g. the
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Time collection which is composed from the articles from the Time magazine
of the period of Cold War. To be more precise its articles cover the period of
1950s’–1960s’. WordNet, however, does not represent historical knowledge of
that time in sufficient level of details. E.g. a query like “signing of the test
ban treaty.” which is query number 60 in Time test collection demonstrates this
problem. The term test ban is present in WordNet. It is also possible to discover
through hyponymy relation that test ban is a kind of a ban, prohibition, refusal,
denial, etc. It is, however, not possible to figure out that this ban has to do with
a ban on testing of nuclear weapons and what countries were involved in this
treaty. Such information would be quite useful for retrieving relevant documents
in this particular case;

• WordNet does not include all terms. E.g. a term like Ngo Dihn Diem—“first
President of the Republic of Vietnam” is not present in WordNet, but is quite
often within Time test collection documents and queries. The manual study of
Time test collection suggests of introducing synonymy relation between terms
Ngo Dihn Diem and President Diem. Furthermore, any relation of Ngo Dihn
Diem to Vietnam is also missing.

These observations led us to the idea to come up with a list of heuristic recom-
mendations for constructing eTVSM ontology automatically or, if prior is not always
possible, manually. In such conditions domain ontology construction can be seen as
the symbioses of two: automatic loading term relations from WordNet and later hu-
man semantic enrichment which addresses described earlier problems. Because of this
human intrusion, we will address the resulting ontology as the one obtained through a
semi-automated procedure.

7.4.2 Semi-automated eTVSM Ontology Modeling Approach
After deciding to allow human intrusion into the domain ontology construction process
we will go again a step back and take the ontology obtained on the synonymy eTVSM
step as the starting point for a new ontology. We will now state a list of hypotheses
we consider relevant for improving the effectiveness of eTVSM through semantic term
relation enrichment of our initial ontology:

• Most of the semantic knowledge, valuable for Information Retrieval model effec-
tiveness, is concentrated in queries. The primary reason for this hypothesis is
the fact that queries are the initiators of retrieval process. We, users of an In-
formation Retrieval system, formulate our information need in form of queries.
We do this by encoding in queries all the content and semantic information that
describes our needs. In regular Information Retrieval scenario queries are short
documents, significantly shorter than documents we intend to retrieve. Thus, by
reducing human activities only to operations on queries we significantly decrease
required human effort in ontology construction assistance, and at the same time
maximize these effort effectiveness;

• All compound terms that occur in queries should be recognized. Compound
terms were already discussed in section 3.1.3. Failing to recognize such terms
as, e.g., test ban—“a ban on the testing of nuclear weapons that is mutually
agreed to by countries that possess nuclear weapons” or Ngo Dihn Diem—“first
president of the Republic of Vietnam” from Time test collection might greatly
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distort intended query semantics which consequently will deliver documents rel-
evant to the misjudged user intention;

• Each recognized term should be a part of a synonymy group. Benefits of syn-
onymy were already described and grounded in section 7.3. If there exist total
synonymy terms for the terms that appear in queries—they should be modeled;

• Semantic relations between terms from the same query should be modeled. If
there exist any semantic relations that were presented in section 2.2 between
any pair of terms from the query they should be modeled. This should poten-
tially increase the chance of retrieving documents that include similar semantic
relations—which is an intended behavior;

• Specific domain knowledge for terms from queries should be modeled. Some
terms might intend to define not a general purpose meaning, but a meaning spe-
cific to some domain. E.g., term hot line in WordNet is described as “a direct
telephone line between two officials”. However, within Time test collection the
intended meaning for term hot line is the concrete “direct telephone line between
the White House and the Kremlin”. The knowledge about concrete official users
might be valuable for this concrete test collection. Similar, the term Ngo Dihn
Diem might be modeled to possess relations with Vietnam and President terms.

The above presented are the most important factors that we believe should be included
into an eTVSM ontology to ensure high retrieval effectiveness. These should be treated
as suggested guidelines to eTVSM ontology construction. If it is possible this approach
is preferred to be performed automatically, if not, it might be partially automated and
further finalized through human assistance.

7.4.3 Evaluation of eTVSM with Semi-automated Ontology
In the previous section we have produced hypotheses that should improve eTVSM
effectiveness. In this section we want to derive practical justification or rejection of
these hypotheses by performing evaluations. The preparation phase for eTVSM eval-
uation will now consist of two stages. First, we have to perform preparation we have
accomplished for the synonymy eTVSM (see section 7.3.2), afterwards we will enrich
the obtained ontology by following the guidelines presented in section 7.4.2. In order
to demonstrate the application of these guidelines in action we present some concrete
examples from Time test collection. We will concentrate our attention only on issues
relevant to stated hypotheses:

1. Query 60: “Signing of the test ban treaty.”

The proposed eTVSM ontology constructed according to descrbred principles
for query 60 is shown in Figure 7.8.

The particularity of such a query is that after stemming and stopword removal
it consists of four words: sign, test, ban and treaty. And, that the most content
bearing part of the query is encoded in a single compound term—test ban. Fail-
ing to recognize this term leads to query misunderstanding. Here, we have also
assigned a semantic relation between a pair of terms from query. It specifies that
test ban is an instance of a treaty. Term treaty is assigned synonym pact obtained
from WordNet.
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Treaty

treaty Test ban

HAS-INSTANCE
pact

test ban

Figure 7.8: Query 60 from Time test collection enrichment ontology extract.

2. Query 2: “Efforts of ambassador Henry Cabot Lodge to get Viet Nam’s Presi-
dent Diem to change his policies of political repression.”

Proposed eTVSM ontology constructed according to descrbred principles for
query 2 is shown in Figure 7.9.
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president

Ambassador

ambassadorembassador
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Lodge

HAS-MEMBERHAS-INSTANCE

henry cabot 

lodge

ambassador

lodge

Figure 7.9: Query 2 from Time test collection enrichment ontology extract.

The compound terms that should get recognized in this query are: Henry Cabot
Lodge, Viet Nam, President Diem. Further, we should apply domain knowledge
to represent that Henry Cabot Lodge was the ambassador in South Viet Nam and
Ngo Dihn Diem was the President in Viet Nam. To extend relations between
terms in the query we might relate South Viet Nam to Viet Nam as its part. For
relations modeling in a query like this it is quite likely that the human participa-
tion would be required.

Recall-precision Plot

For our evaluation we have obtained eTVSM ontology by first performing automated
synonymy eTVSM ontology construction. We have then added all additional relations
manually. Nevertheless, it is possible to perform portion of the task we have performed
automatically by loading corresponding WordNet concepts. We have followed to the
proposed guidelines and performed ontology construction similar to example queries
2 and 60 we have presented from Time test collection. It must be mentioned, that as
far as proposed guidelines can not be seen as strict instructions; there is a notion of
heuristics in our procedure. However, we believe that any rational work in proposed
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direction should deliver improvement in results. Figure 7.10 graphically presents recall
and precision measurements we have obtained at this stage of evaluation.
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Figure 7.10: eTVSM with a semi-automated ontology recall-precision plot.

With a solid line, we have plotted measurements obtained while VSM evaluation
(VSM). This line can be seen as a benchmark for further comparisons. At the early
stages of eTVSM ontology construction we have performed evaluation to check how
eTVSM behaves. We have performed eTVSM re-evaluation after each 2–3 queries
we have used to derive term relations. Measurements for some initial intermidiate
evaluations are shown with dashed lines (int. eTVSM). The behavior of recall-precision
plot with respect to number of processed queries assured us that we are on the right
way. We have presented the recall-precision plot for our final evaluation with eTVSM
ontology after performing processing of approximately half of Time test collection
queries (111 additional term relations were added manually for about 16000 terms
in total). It is shown with dashed line of variable-dash line lengths (s-a eTVSM—
closest to the right-top corner). Regardless of quite considerable visual improvement in
recall-precision plot, we believe that not actual numbers are of real value, but a general
tendency of model effectiveness behavior which tends to the (1, 1) recall-precision
measurement values combination.

Precision at Standard Recall Levels Plot

We have constructed the precision at standard recall levels plot for our final eTVSM
evaluation. You can see it in Figure 7.11 superposed on plots for prior evaluations:
VSM simulation (VSM) and synonymy eTVSM (syn eTVSM). It is shown with line
connecting solid-filled circles that represent actual precision values (s-a eTVSM). As
you can see, eTVSM with ontology configuration derived in this section delivers better
precision at all standard recall levels.
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Figure 7.11: eTVSM with a semi-automated ontology precision at standard recall levels
plot.

Comparisons

α t82,1−α
2

Iα

0.00050 3, 6251 [−0.0059, 0.2567]
0.00075 3.5021 [−0.0014, 0.2522]
0.00100 3.4132 [ 0.0018, 0.2490 ]
0.00125 3.3432 [0.0043, 0.2465]
0.00150 3.2853 [0.0064, 0.2444]

α—confidence level, t—Student-t distribution quantile,
I—confidence interval.

Table 7.2: VSM and semi-automated eTVSM comparison—confidence intervals.

We will perform comparisons of semi-automated eTVSM with prior performed
evaluations of VSM and synonymy eTVSM. First we will perform the comparison
procedure described in section 5.6.2. We compare the semi-automated eTVSM with
the VSM. Again, as in section 7.3.3, for a comparison measurement we will take re-
call and precision measured for each query at a cut-off rank equal to the number of
relevant documents to this query proposed by the Time test collection. Thus, recall is
equal to precision for each query and we have one measurement value for each query-
model pair. We will construct confidence intervals for µ = µ1 − µ2 where µ1 is the
mean measurement value for semi-automated eTVSM and µ2 is the mean measurement
value for VSM. Intervals were obtained based on computed estimators ẑ = 0.1254 and
S2 = 0.1089. Computational results for confidence intervals are given in Table 7.2.
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The comparison setup concludes that semi-automated eTVSM performs better than
VSM with respect to compared measurement parameter when confidence interval is a
positive interval not containing zero. In Table 7.2 you can see that such condition holds
when confidence level α reaches value of 0.001.

We have performed the same procedure for the same measurement parameter to
compare semi-automated eTVSM with synonymy eTVSM. Confidence intervals for
µ = µ1 − µ2 were constructed, where µ1 is the mean measurement value for semi-
automated eTVSM and µ2 is the mean measurement value for synonymy eTVSM.
Intervals were obtained based on computed estimators ẑ = 0.1077 and S2 = 0.0836.
Computational results for confidence intervals are given in Table 7.3. In this compar-
ison setup we can conclude that semi-automated eTVSM performs better than syn-
onymy eTVSM with respect to compared measurement parameter when confidence
interval is a positive interval not containing zero. In this comparison the confidence
level of 0.001 still includes zero and has negative segment. However, at 0.00125 con-
fidence level α the statement of semi-automated eTVSM superiority over synonymy
eTVSM becomes statistically grounded.

α t82,1−α
2

Iα

0.00050 3, 6251 [−0.0073, 0.2228]
0.00075 3.5021 [−0.0034, 0.2189]
0.00100 3.4132 [−0.0006, 0.2161]
0.00125 3.3432 [ 0.0016, 0.2138 ]
0.00150 3.2853 [0.0035, 0.2120]

α—confidence level, t—Student-t distribution quantile,
I—confidence interval.

Table 7.3: Synonymy eTVSM and semi-automated eTVSM comparison—confidence
intervals.

In both comparisons performed the significance level α is low enough to conclude
that semi-automated eTVSM outperforms VSM and synonymy eTVSM. Next, we per-
form a statistical test and check the level of difference in the measured parameter, that
we can statistically reason on semi-automated eTVSM superiority. The test description
was given in section 5.6.3. Results of the test are provided in Table set 7.4.

These results can be interpreted as follows: Suppose, you want to check the sig-
nificance level of measured parameter for semi-automated eTVSM to be better as for
VSM for d0 = 0.03. The corresponding test statistics value T from Table 7.4.a is
1.6832. Further, you must find an appropriate t value in Table 7.4.c for which holds
T > t. In our case this t value is 1.6542. The corresponding confidence level α is,
therefore, 0.05. This means that semi-automated eTVSM outperforms VSM in com-
pared parameter in 0.03 with a confidence level of 0.05. Following same procedure,
we might conclude, that semi-automated eTVSM outperforms synonymy eTVSM in
compared parameter in 0.03 with a confidence level α of 0.09.

The study of difference-confidence level pairs also speaks for superiority of semi-
automated eTVSM over VSM and synonymy eTVSM, even in the test conditions of
Time test collection that has only 83 queries. However, the problem of statistical signif-
icance justification of obtained results is opened for all test collections, as they usually
possess limited number of queries, resulting in a small sets of tested measurement val-
ues.
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a)

d0 T
0.001 2.1948
0.005 2.1242
0.01 2.0360
0.02 1.8596
0.03 1.6832
0.04 1.5068
0.05 1.3304
0.06 1.1540
0.07 0.9776
0.08 0.8012
0.09 0.6247
0.10 0.4483

b)

d0 T
0.001 1.8570
0.005 1.7874
0.01 1.7004
0.02 1.5264
0.03 1.3524
0.04 1.1784
0.05 1.0045
0.06 0.8305
0.07 0.6565
0.08 0.4825
0.09 0.3085
0.10 0.1345

c)

α t164,1−α

0.01 2.3493
0.02 2.0702
0.03 1.8939
0.04 1.7616
0.05 1.6542
0.06 1.5629
0.07 1.4830
0.08 1.4115
0.09 1.3465
0.10 1.2867
0.15 1.0397
0.20 0.8438

d0—tested difference level, T—test statistics,
α—confidence level, t—Student-t distribution quantile.

Table 7.4: Results of the test: a) test statistics for semi-automated eTVSM and VSM
test, b) test statistics for semi-automated eTVSM and synonymy eTVSM test, c) confi-
dence levels and corresponding Student-t distribution quantiles.

Summary

The proposed approach has delivered a significant improvement in eTVSM evaluation
results. Nevertheless we have to rely on human assistance, we attempt to keep it as
small as possible. Potential human operations are reduced to query interpretations.
To further benefits of proposed approach one might address non local phenomenon of
acquired improvements. Along with the re-evaluations of eTVSM for intermediate on-
tology configurations we have observed not only improvements in measurements for
queries been processed, but also for other queries from test collection. For the concrete
test collection (Time collection) it makes sense to go through all queries and perform
proposed procedure. But what to do in a real-world scenario, with ever changing doc-
ument collection and endless stream of various incoming queries? For such cases we
propose the following behavior: The starting eTVSM ontology should be configured
following the principles presented in synonymy eTVSM description (see section 7.3.2).
Afterwards, one might apply ontology enrichment with term relations acquired from
most common queries that were sent to the system. To make this approach feasible,
one must keep track of queries sent to the system and their frequencies.

Additionally the proposed approach suits well for the Information Retrieval sce-
nario with user feedback. Imagine that users of your system are allowed to send back
their experience of working with your system in a form of documents they intend to see
retrieved or retrieved with a higher rank position to a given query. One might enrich
eTVSM ontology to contain term relations between query and document terms for such
most frequent user suggestions.

7.5 Latent Semantic Analysis
So far we have performed evaluations and comparisons of the eTVSM and the VSM.
On a very high level we explain superiority of eTVSM over VSM in terms of eTVSM
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ability to actually “understand” documents and queries. eTVSM tries to model hu-
man perception in parts through representing human perceptional units and relations
between them in the eTVSM ontology. Thus, an ontology configuration becomes some
sort of a simplified human perceptual model we believe to be sufficient for our scope of
Information Retrieval problem. In this section we want to discuss another Information
Retrieval model that applies similar view to the Information Retrieval problem—the
Latent Semantic Analysis (LSA). The LSA approach claims as one able to model hu-
man conceptual knowledge. Applied mechanisms allow comparing documents at the
level of their topical similarity.

LSA is a well studied approach with widely available evaluation results for various
test collections. We would like to perform comparisons of former obtained in our work
evaluation results for eTVSM with same measurements obtained in LSA evaluations.
Furthermore, we will give a brief introduction to LSA with presenting principles of
LSA operations it takes to fulfill its tasks. We will then provide LSA evaluation results
we have found in the literature for Time test collection. Finally, we would like to
provide conceptual differences, as we see them, between eTVSM and LSA.

7.5.1 Introduction to Latent Semantic Analysis

LSA is a fully automatic mathematical/statistical technique for extracting and inferring
relations of expected contextual usage of words in passages of discourse. It is not a
traditional natural language processing or artificial intelligence program; it uses no hu-
manly constructed dictionaries, knowledge bases, semantic networks, grammars, syn-
tactic parsers, or morphologies, or the like, and takes as its input only raw text parsed
into words defined as unique character strings and separated into meaningful passages
or samples such as sentences or paragraphs. LSA is a theory and method for extracting
and representing the contextual-usage meaning of words by statistical computations.
LSA was applied and assessed in several ways. These are:

• predictor of query-document topic similarity judgments;

• simulation of agreed upon word-word relations and of human vocabulary test
synonym judgments;

• simulation of human choices on subject-matter multiple choice tests;

• predictor of text coherence and resulting comprehension;

• simulation of word-word and passage-word relations found in lexical priming
experiments;

• predictor of subjective ratings of text properties, i.e. grades assigned to essays;

• predictor of appropriate matches of instructional text to learners;

• mimic synonym, antonym, singular-plural and compound-component word re-
lations, aspects of some classical word sorting studies, to simulate aspects of
imputed human representation of single digits, and, in pilot studies, to replicate
semantic categorical clustering of words found in certain neuropsychological
deficits [37].
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What is interesting in respect to our work is LSA application in Information Retrieval
field. Some researchers have called attention to the analogy between Information Re-
trieval and human semantic memory processes. One way of expressing their common-
ality is to think of a searcher as having in mind a certain meaning, which he or she
expresses in words, and the system as trying to find a text with the same meaning. Sys-
tem’s success will then be the correct query meaning interpretation and further retrieval
of documents with a similar meaning from a document collection. It was shown that
LSA copes with this task better than systems that look for term matches in queries and
documents. Its superiority can often be traced to its ability to correctly match queries to
documents of similar topical meaning when query and document use different words.

Some first tests of LSA were performed against standard test collections, most of
them were presented in Table 5.1 on page 39. These are test collections of documents
for which representative queries have been obtained and knowledgeable humans have
more or less exhaustively examined the whole database and judged which abstracts are
and are not relevant to the topic described in each query statement. For such experi-
ments LSA performance ranged from equivalent to the best prior methods to up 30%
improvement as compared to them.

7.5.2 Latent Semantic Indexing

In the context of its application to Information Retrieval, LSA is called Latent Semantic
Indexing (LSI). Prior to start comparison of eTVSM and LSI evaluation results we
would like to present the algorithmic formalism used by LSI [38]. The first step is to
represent the text as a matrix in which each row stands for a unique word and each
column stands for a text passage or other context. Each cell contains the frequency
with which the word of its row appears in the passage denoted by its column. The
cell entries are then subjected to a preliminary transformation. It is basically the term
weighting scheme in which each cell frequency is weighted by a function that expresses
both the word’s importance in the particular passage and the degree to which the word
type carries information in the domain of discourse in general.

Let X be such a matrix that element (i, j) describes the occurrence of term i in
document j, as simplest—term occurrence in the document. Then X looks like this:

dj

↓

tTi →

x1,1 . . . x1,n

...
. . .

...
xm,1 . . . xm,n


Each row in such a matrix will be a term vector giving its relation to each document:

tTi =
[
xi,1 . . . xi,n

]
Similar, a column in this matrix will be a document vector, specifying its relation to
each term:

dj =

x1,j

...
xm,j
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Now, the dot product tTi tp between two term vectors gives the correlation between the
terms over the documents. The matrix product XXT contains all these dot products.
Element (i, p) (which is equal to element (p, i)) contains the dot product tTi tp (= tTp ti).
Likewise, the matrix XT X contains the dot products between all the document vectors,
giving their correlation over the terms: dT

j dq = dT
q dj .

LSI applies singular value decomposition (SVD) to the matrix. This is a form of
factor analysis, or more properly the mathematical generalization of which factor anal-
ysis is a special case. In SVD, a rectangular matrix is decomposed into the product of
three other matrices. One component matrix describes the original row entities as vec-
tors of derived orthogonal factor values, another describes the original column entities
in the same way, and the third is a diagonal matrix containing scaling values such that
when the three components are matrix-multiplied, the original matrix is reconstructed.
There is a mathematical proof that any matrix can be so decomposed perfectly, using
no more factors than the smallest dimension of the original matrix. Now assume that
our matrix X was subject to SVD to give U and V orthonormal matrices and Σ—a
diagonal matrix.

X = UΣV T

The matrix products giving us the term and document correlations then become:

XXT = (UΣV T )(UΣV T )T = (UΣV T )(V T T

ΣT UT )
= UΣV T V ΣT UT = UΣΣT UT

XT X = (UΣV T )T (UΣV T ) = (V T T

ΣT UT )(UΣV T )
= V ΣUT UΣV T = V ΣT ΣV T

Since ΣΣT and ΣT Σ are diagonal we see that U must contain the eigenvectors of
XXT , while V must be the eigenvectors of XT X . Now the decomposition looks like
this:

U Σ V T

(d̂j)
↓

(t̂Ti ) →


u1

 . . .

ul


 ·

σ1 . . . 0
...

. . .
...

0 . . . σl

 ·


[

v1

]
...[

vl

]


The values σ1, . . . , σl are called the singular values, and u1, . . . , ul and v1, . . . , vl the
left and right singular vectors.

When fewer than the necessary number of singular values are used, the recon-
structed matrix is a least-squares best fit. One can reduce the dimensionality of the
solution simply by deleting coefficients in the diagonal matrix, ordinarily starting with
the smallest leaving k largest singular values. (In practice, for computational reasons,
for very large test collections only a limited number of dimensions, currently a few
thousand, can be constructed.) The amazing thing about this approximation is that not
only does it have a minimal error, but it translates the term and document vectors into
a concept space. The vector t̂i then has k entries, each giving the occurrence of term i
in one of the k concepts. Likewise, the vector d̂j gives the relation between document
j and each concept. This approximation can be written as:
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Xk = UkΣkV T
k

You can now do the following:

• See how related documents j and q are in the concept space by comparing the
vectors d̂j and d̂q (typically by cosine similarity). This gives you a clustering of
the documents;

• Comparing terms i and p by comparing the vectors t̂i and t̂p, giving you a clus-
tering of the terms in the concept space;

• Given a query, view this as a mini document, and compare it to your documents
in the concept space.

To do the latter, you must first translate your query into the concept space. It is then
intuitive that you must use the same transformation that you use on your documents:

dj = UkΣkd̂j

d̂j = Σ−1
k UT

k dj

This means that if you have a query vector q, you must do the translation q̂ = Σ−1
k UT

k q
before you compare it with the document vectors in the concept space. The comparison
of the query vector with all document vectors will conclude the document collection
search for relevant documents.

By reducing dimensionality only to the most significant dimensions LSI is able to
abstract from unimportant seldom content extracting valuable conceptual knowledge
and presenting it in the low-dimensional (appropriate for computational requirements)
concept space. Such operation of abstracting from details and concentrating on main
topic is concidered by LSI to be similar to human normal approach to world perception.

7.5.3 Comparison of LSI with eTVSM
In order to be able to compare LSI evaluation results with those already obtained for
eTVSM we performed a search for existing LSI evaluations on the Time test collec-
tion. Further, we obtained an approximate values for comparable measurements on
evaluation that has delivered best results for LSI out of what we have found. For this
purpose we used evaluation results we obtained from [10]. The visual comparison of
such approximate precision at standard recall levels plot for LSI with former eTVSM
evaluations can be done in Figure 7.12. Here, the LSI effectiveness approximation,
dashed line (LSI approx), is superposed on already presented evaluation measurements
for eTVSM.

Visual analysis shows that LSI evaluation from [10] performs better than synonymy
eTVSM 7.3 (syn eTVSM) and worse than semi-automated eTVSM (s-a eTVSM) eval-
uation measurements obtained in section 7.4. However, you might as well find LSI
evaluations that do not show superiority over synonymy eTVSM [18]. LSI gives de-
scriptions on how to represent the contextual-usage meaning of terms by precise statis-
tical computations leaving minor space for variations. The only model parameter that
can influence effectiveness is the number of dimensions to include in a concept space.
In such conditions, the number of possible variations of concept space modeling is
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Figure 7.12: LSI precision at standard recall levels plot.

very limited. On the other hand, eTVSM allows an unlimited number of operational
spaces each giving the specification of capable human-like understanding of semantic
relations between terms. Some general LSI drawbacks are:

• The resulting dimensions might be difficult to interpret. This leads to results
which can be justified on the mathematical level, but have no interpretable mean-
ing in natural language;

• LSA, in general, assumes that words and documents form a joint Gaussian model
(a Poisson distribution is observed). A newer alternative is a probabilistic Latent
Semantic Analysis [29] based on a multinomial model. It is reported to give
better results than standard LSA.





Chapter 8

Conclusions

In this work we have performed a complete evaluation cycle of a novel Information
Retrieval model—the eTVSM. It includes model configuration, actual experiments and
further collecting and aggregating of quality measurements. Prior to our evaluations we
have presented theoretical background on the topic which included eTVSM descrip-
tion, Information Retrieval model effectiveness measurements, statistical approach to
model comparisons and evaluation design for performing Information Retrieval model
evaluations.

We have performed evaluations in chapter 7 which show that eTVSM performs
better then other approaches like VSM or LSI if a proper domain ontology is provided.
The eTVSM can represent semantic term relations to model common linguistic phe-
nomena by representing these relations in a domain ontology. Such semantic term re-
lations are then mapped by the eTVSM onto the vector angles in the operational vector
space. Furthermore, the eTVSM proposes a formal procedure for deriving term angles
from an eTVSM ontology model which now becomes a central place for semantic term
relations modeling. As long as semantic term relations are considered to be expressible
through one parameter a vector space is a perfect choice for representing them through
angles. A vector space gives an endless space for expressing levels of semantic rela-
tions, yet having an intuitive interpretation of terms to be more relevant the smaller the
angle is between corresponding term vectors.

One of the drawbacks of the eTVSM is its computational complexity. If to come
up with its pure implementation that follows all the theoretical prescriptions presented
in chapter 3, the system that is based on such an Information Retrieval model will be
hardly usable. One change in ontology would result in the necessity to reconstruct all
document models. Changes in ontology might also result in non-local change in inter-
pretation similarities that are used while obtaining eTVSM document similarities. In
section 6.5 we have presented approach to implementing Information Retrieval system
based on eTVSM which reduces overall complexity by not requiring synchronous exe-
cution of certain activities. It includes simplification assumptions and basically defines
a transaction schema for common eTVSM operations. This approach was used for
eTVSM implementation in Themis (developed framework for Information Retrieval
models) and has proven its benefits while eTVSM evaluations conducted in chapter 7.
In general, we believe that with proposed transaction schema eTVSM might be de-
ployed for a real-world scenario as, e.g., a model for the Information Retrieval system
in a middle size company’s Intranet.

Any Information Retrieval system along with efficient algorithms also requires

83
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effectiveness from incorporated retrieval model. Search results should not only be
delivered fast, they also need to be relevant to user queries. As the output of performed
evaluations we have came up with an eTVSM ontology lifecycle that starts together
with system deployment. It was presented in section 7.4. The basic idea is to start from
an automatically constructed ontology which has delivered the best effectiveness of
the model—synonymy eTVSM (see section 7.3.2). Then, this basic ontology can get
enriched online based on the developed heuristic guidelines presented in section 7.4.2.
These heuristic steps should improve chances for users to find relevant information.

A further positive aspect of the eTVSM is that it allows on the fly model re-
configurations through changes in eTVSM ontology. This feature is important for
Information Retrieval systems that intend to consider user feedback to improve effec-
tiveness. It is a case when users are allowed to send back their experience of working
with a system in a form of documents they want to be retrieved with a higher rank
position to a given query.



Bibliography

[1] National Institute of Informatics (NTCIR Project), 2006.
http://research.nii.ac.jp/ntcir/permission/perm-en.html

[2] Reuters-21578 test collection, 2006.
http://www.daviddlewis.com/resources/testcollections/reuters21578/

[3] Text Retrieval Conference (TREC), 2006.
http://trec.nist.gov

[4] WordNet download, 2006.
http://wordnet.princeton.edu/obtain

[5] WordNet SQL Builder project, 2006.
http://wnsqlbuilder.sourceforge.net/

[6] Reuters Corpora, 2007.
http://groups.yahoo.com/group/ReutersCorpora/

[7] WordNet online, 2007.
http://wordnet.princeton.edu/perl/webwn

[8] BAEZA-YATES, R. A.; RIBEIRO-NETO, B. A.: Modern Information Retrieval.
ACM Press / Addison-Wesley, 1999.
http://citeseer.ist.psu.edu/baeza-yates99modern.html

[9] BAI, J.; SONG, D.; BRUZA, P.; NIE, J.-Y.; CAO, G.: Query Expansion Using
Term Relationships in Language Models for Information Retrieval, 2005

[10] BAST, H.; MAJUMDAR, D.: Why Spectral Retrieval Works. In SIGIR Forum.
2005, p. 11–18

[11] BECKER, J.; KUROPKA, D.: Topic-based Vector Space Model. In Proceedings
of the 6th International Conference on Business Information Systems. Colorado
Springs, July 2003, p. 7–12.
http://bpt.hpi.uni-potsdam.de/twiki/bin/view/Public/DominikKuropka

[12] BOOKSTEIN, A.; KLEIN, S. T.; RAITA, T.: Detecting Content Bearing Words by
Serial Clustering. In SIGIR Forum (ACM Special Interest Group on Information
Retrieval). 1995, p. 319–327

[13] BUCKLEY, C.; ALLAN, J.; SALTON, G.: Automatic Retrieval with Locality In-
formation using SMART . In Proceedings of the First Text Retrieval Conference
TREC-1. 1993, p. 59–72

85



86 BIBLIOGRAPHY

[14] BUNT, H.: Mass Terms and Model-theoretic Semantics. Cambridge University
Press, New York, 1985

[15] BURKHARDT, H.; DUFOUR, C.: Handbook of Metaphysics and Ontology.
Philosophia Verlag, München, 1991

[16] CASSANDRAS, C. G.: Discrete Event Systems — Modeling and Performance
Analysis. Aksen Associates, Boston, 1993

[17] CHEN, P. P.: The Entity-Relationship Model—Toward a Unified View of Data..
In ACM Trans. Database Syst. 1(1), 1976: p. 9–36.
http://csc.lsu.edu/news/erd.pdf

[18] CHENG, B.: Towards Understanding Latent Semantic Indexing

[19] CHURCH, K. W.: One Term Or Two?. In SIGIR. 1995, p. 310–318

[20] CRESTANI, F.: A Model for Combining Semantic and Phonetic Term Similar-
ity for Spoken Document and Spoken Query Retrieval. Fachbericht TR-99-020,
Berkeley, CA, 1999

[21] DIRVEN, R.: Conversion as a Conceptual Metonymy of Basic Event Schemata.
In Workshop on Metonymy. Hamburg University, Germany, June 23-24, 1996

[22] DUPRET, G.: Latent Semantic Indexing with a Variable Number of Orthogonal
Factors

[23] FASS, D.: Processing Metonymy and Metaphor. Greenwich, Conn.: Ablex Pub.
Corp., London, 1997

[24] FLORIDI, L.: The Blackwell Guide to the Philosophy of Computing and Informa-
tion. Oxford University Press, New York, 2003

[25] FROMKIN, V.; RODMAN, R.; HYAMS, N.: An Introduction to Language. Heinle,
2006

[26] GOSSET, W. S.: The probable error of a mean. In Biometrika (6(1)), 1908: p.
1–25

[27] GROSS, J. L.; YELLEN, J.: Handbook of Graph Theory. CRC Press, 2003

[28] HEARST, M.: Automatic Acquistion of Hyponyms from Large Text Corpora. In
Proceedings of the Fourteenth International Conference on Computational Lin-
guistics. Nantes, France, 1995

[29] HOFMANN, T.: Probabilistic Latent Semantic Analysis. In Proc. of Uncertainty
in Artificial Intelligence, UAI’99. Stockholm, 1999

[30] HULL, D.: Stemming Algorithms — A Case Study for Detailed Evaluation. In
JASIS (47(1)), 1996: p. 70–84

[31] IMAI, H.; COLLIER, N.; TSUJII, J.: A Combined Query Expansion Approach for
Information Retrieval, 1999

[32] JONES, K.: Information Retrieval Experiment. Butterworth, 1981



BIBLIOGRAPHY 87

[33] JONES, K.: Synonymy and Semantic Classification. Edinburgh University Press,
Edinburgh, Scotland, 1986

[34] KINI, A. U.: On thr Effect of Inquirt Term-weighting Scheme on Query-sensitive
Similarity Measures, 2005

[35] KROVETZ, R.; CROFT, W. B.: Lexical Ambiguity and Information Retrieval. In
Information Systems 10(2), 1992: p. 115–141

[36] KUROPKA, D.: Modelle zur Repräsentation natürlichsprachlicher Dokumente.
Logos Verlag, Berlin, 2003

[37] LAHAM, D.: Latent Semantic Analysis Approaches to Categorization. In Pro-
ceedings of the 19th Annual Conference of the Cognitive Science Society 1997: p.
979

[38] LANDAUER, T. K.; FOLTZ, P. W.; LAHAM, D.: Introduction to Latent Semantic
Analysis. In Discourse Processes 25, 1998: p. 259–284

[39] LEE, D. L.; CHUANG, H.; SEAMONS, K.: Document Ranking and the Vector-
Space Model. In IEEE Softw. 14(2), 1997: p. 67–75

[40] LOVINS, J. B.: Development of a Stemming Algorithm. In Mechanical Transla-
tion and Computational Linguistics (11), 1968: p. 22–31

[41] O’MAHONY, M.: Sensory Evaluation of Food: Statistical Methods and Proce-
dures. CRC Press, New York, 1986

[42] PAICE, C.: Method for Evaluation of Stemming Algorithms Based on Error
Counting. In JASIS (47(8)), 1996: p. 632–649

[43] PARAPAR, D.; BARREIRO, A.; LOSADA, D. E.: Query Expansion Using Word-
Net with a Logical Model of Information Retrieval

[44] PECK, R.; OLSEN, C.; DEVORE, J. L.: Introduction to Statistics and Data Anal-
ysis (with ThomsonNOW Printed Access Card). Duxbury Press, 2007

[45] POLYVYANYY, A.: Evaluation Design of Information Retrieval System with
eTVSM Specific Extensions, 2006.
http://bpt.hpi.uni-potsdam.de/twiki/pub/Public/SeminarPublications/

ArtemPolyvyanyy.pdf

[46] POLYVYANYY, A.: Evaluation of a Novel Information Retrieval Model: eTVSM,
2007. Master thesis at the Hasso Plattner Institute, University of Potsdam,
http://kuropka.net/3rd_party_files/Thesis_Artem_Polyvyanyy.pdf

[47] PORTER, M.: An Algorithm for Suffix Stripping. In Program (14(3)), 1980: p.
130–137

[48] PORTER, M.: Snowball: A Language for Stemming Algorithms, 2001.
http://www.snowball.tartarus.org/texts/introduction.html

[49] RAGHAVAN, V. V.; WONG, S. K. M.: A Critical Analysis of Vector Space Model
for Information Retrieval. In Journal of the American Society for Information
Science (35(5)), 1986: p. 279–287



88 BIBLIOGRAPHY

[50] ROSSO, P.; FERRETTI, E.; JIMNÉZ, D.; VIDAL, V.: Text Categorization and
Information Retrieval Using Wordnet Senses, 2004.
http://citeseer.ist.psu.edu/697740.html

[51] SALTON, G.: Introduction to Modern Information Retrieval (McGraw-Hill Com-
puter Science Series). McGraw-Hill Companies, September 1983

[52] SALTON, G.: Automatic Text Processing — The Transformation, Analysis, and
Retrieval of Information by Computer. Addison-Wesley, 1989

[53] SALTON, G.; BUCKLEY, C.: Term Weighting Approaches in Automatic Text Re-
trieval. Fachbericht, Ithaca, NY, USA, 1987.
http://portal.acm.org/citation.cfm?id=866292

[54] SALTON, G.; WONG, A.; YANG, C. S.: A Vector Space Model for Automatic
Indexing. In Communications of the ACM (vol. 18, nr. 11), 1975: p. 613–620

[55] SANDERSON, M.: Reuters Test Collection. In BSC IRSG. 1994

[56] SANDERSON, M.: Word Sense Disambiguation and Information Retrieval. In
Proceedings of SIGIR-94, 17th ACM International Conference on Research and
Development in Information Retrieval. Dublin, IE, 1994, p. 49–57

[57] S.N.BERNSTEIN: The Scientific Legacy of P. L. Chebyshev. First Part: Mathe-
matics. Academiya Nauk SSSR, Moscow-Leningrad, 1945

[58] SRZEDNICKI, J. T. J.; RICKEY, V. F.: Lesniewski’s Systems: Ontology and
Mereology. Kluwer, 1984

[59] STUMP, G.: Inflectional Morphology: A Theory of Paradigm Structure (Cam-
bridge Studies in Linguistics). Cambridge University Press, New York, 2001

[60] TURTLE, H. R.; CROFT, W. B.: A comparison of text retrieval models. In Com-
put. J. 35(3), 1992: p. 279–290

[61] VALIN, V.; ROBERT, D.: An Introduction to Syntax. Cambridge University Press,
New York, 2001

[62] VAN RIJSBERGEN, C. J.: Information retrieval. Butterworths, London, 1979



Aktuelle Technische Berichte  
des Hasso-Plattner-Instituts 

 
Band ISBN Titel Autoren / Redaktion 

    
18 
 
 
 

978-939-469-
58-2 

 
 

Proceedings of the Fall 2006 Workshop of 
the HPI Research School on Service-
Oriented Systems Engineering 
 

Benjamin Hagedorn, Michael 
Schöbel, Matthias Uflacker, 
Flavius Copaciu, Nikola Milanovic 
 

17 
 
 

3-939469-52-1 / 
978-939469-52-

0 

Visualizing Movement Dynamics in Virtual 
Urban Environments 
 

Marc Nienhaus, Bruce Gooch, 
Jürgen Döllner 
 

    
16 
 
 
 
 
 

3-939469-35-1 / 
978-3-939469-

35-3 
 
 
 

Fundamentals of Service-Oriented 
Engineering 
 
 
 
 

Andreas Polze, Stefan 
Hüttenrauch, Uwe Kylau, Martin 
Grund, Tobias Queck, Anna 
Ploskonos, Torben Schreiter, 
Martin Breest, Sören Haubrock, 
Paul Bouché 

    
15 
 
 
 

3-939469-34-3 / 
 978-3-

939469-34-6 
 

Concepts and Technology of SAP Web 
Application Server and Service Oriented 
Architecture Products 
 

Bernhard Gröne,  Peter Tabeling, 
Konrad Hübner 
 
 

    
14 
 
 
 
 
 

3-939469-23-8 / 
978-3-939469-

23-0 
 
 
 

Aspektorientierte Programmierung  – 
Überblick über Techniken und Werkzeuge 
 
 
 
 

Janin Jeske, Bastian Brehmer, 
Falko Menge, Stefan 
Hüttenrauch, Christian Adam, 
Benjamin Schüler, Wolfgang 
Schult,  Andreas Rasche, 
Andreas Polze 

    
13 
 
 
 

3-939469-13-0 / 
978-3-939469-

13-1 
 

A Virtual Machine Architecture for 
Creating IT-Security Labs 
 
 

Ji Hu, Dirk Cordel, Christoph 
Meinel 

 
 

    
12 
 
 
 

3-937786-89-9 / 
978-3-937786-

89-6 
 

An e-Librarian Service - Natural Language 
Interface for an Efficient Semantic Search 
within Multimedia Resources 
 

Serge Linckels, Christoph Meinel 
 
 
 

    
11 
 

3-937786-81-3 
 

Requirements for Service Composition 
 

Prof. Dr. M. Weske,  Dominik 
Kuropka Harald Meyer 

10 
 

3-937786-78-3 
 

Survey on Service Composition 
 

Prof. Dr. M. Weske,  Dominik 
Kuropka Harald Meyer 

    
9 
 
 

3-937786-73-2 
 
 

Sichere Ausführung nicht 
vertrauenswürdiger Programme 
 

Andreas Polze Johannes Nicolai, 
Andreas Rasche 

 
    

8 
 

3-937786-72-4 
 

Resourcenpartitionierung für Grid-
Systeme 

Andreas Polze, Matthias 
Lendholt, Peter Tröger 

    
7 
 
 

3-937786-56-2 
 
 

Visualizing Design and Spatial Assembly 
of Interactive CSG 
 

Prof. Dr. Jürgen Döllner, Florian 
Kirsch, Marc Nienhaus 
 

    
6 
 
 

3-937786-54-6 
 
 

Konzepte der Softwarevisualisierung für 
komplexe, objektorientierte 
Softwaresysteme 

Prof. Dr. Jürgen Döllner, 
Johannes Bohnet 
 

 



 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ISBN 978-3-939469-95-7 
ISSN 1613-5652 
 


	Abstract
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Information Retrieval Models: VSM and TVSM
	Common Terms and Definitions
	Linguistic Phenomena
	Vector Space Model
	Topic-based Vector Space Model

	Enhanced Topic-based Vector Space Model
	eTVSM Ontology
	Topic Map
	Interpretations
	Terms
	eTVSM Ontology Modeling Language

	eTVSM Ontology Modeling
	Constructing the eTVSM Document Model
	eTVSM Document Similarity
	Heuristics for the eTVSM

	Information Retrieval Quality Measurements
	Measurements
	Recall
	Precision
	F-measure
	Error rate

	Measurements Graphical Representation

	Comparison of Information Retrieval Models
	Design of a Model Evaluation
	Elements of the Evaluation
	Test Collection
	Existing Test Collections
	Experimental Design
	Statistical Comparison Justification
	Assumptions
	Comparing Two Systems
	Significance Test (t-Test)


	Themis Implementation
	What is Themis?
	Technology
	Themis System Architecture
	Search Engine
	Document Model Builder
	Configuration System
	Tester
	Crawler

	Themis Data Model
	Time vs. Space Complexity Compromise

	eTVSM Evaluation
	Evaluation Setup
	VSM Simulation with eTVSM
	Formal Simulation eTVSM Ontology Derivation
	Evaluation of VSM Simulation with eTVSM

	Synonymy eTVSM
	WordNet as Source of Semantics
	Synonymy eTVSM Ontology Modeling Approach
	Evaluation of Synonymy eTVSM

	eTVSM with Semi-automated Ontology
	Why Semi-automated?
	Semi-automated eTVSM Ontology Modeling Approach
	Evaluation of eTVSM with Semi-automated Ontology

	Latent Semantic Analysis
	Introduction to Latent Semantic Analysis
	Latent Semantic Indexing
	Comparison of LSI with eTVSM


	Conclusions
	Bibliography
	Impressum07.pdf
	A quantitative evaluation of the enhanced Topic-based Vector Space Model
	Potsdam 2007
	 Bibliografische Information Der Deutschen Nationalbibliothek 
	Am Neuen Palais 10 
	14469 Potsdam


	Technische Berichte Liste.pdf
	Aktuelle Technische Berichte  des Hasso-Plattner-Instituts

	blanco.pdf
	Application Server Technology
	Potsdam 2006
	 
	Bibliografische Information der Deutschen Bibliothek 
	Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen
	Postfach 60 15 53


	Impressum07.pdf
	A Quantitative Evaluation of the Enhanced  Topic-Based Vector Space Model
	Potsdam 2007
	 Bibliografische Information Der Deutschen Nationalbibliothek 
	Am Neuen Palais 10 
	14469 Potsdam





