
39

Process Query Language: Design, Implementation and Evaluation

ARTEM POLYVYANYY, ARTHUR H.M. TER HOFSTEDE, MARCELLO LA ROSA, and
CHUN OUYANG, Queensland University of Technology

Organisations can derive significant benefits from the use of practices, techniques, and tools from the area of business process

management. Through the concomitant focus on processes they may acquire a substantial number of process models and

such large collections of models require management, including support for versioning, merging, conformance checking,

and retrieval. Model retrieval thus far has mostly focussed on querying models using syntactic properties of their control

flow rather than on exploiting semantic properties capturing aspects of model execution. While the latter is (much) more

challenging, it is also more effective, especially in a context where process models serve as a basis for subsequent automation.

The focus of this paper is to overcome the challenges associated with semantic querying of process model collections and

thus unlocking its benefits. The first challenge concerns determining decidability of the building blocks of the semantic

query language, i.e. semantic relations between tasks. This is important as not all such relations can necessarily be computed,

especially if one allows them to be based on unrestricted temporal logic statements. The second challenge concerns useability,

specifically, selecting those semantic relations among those that are computable that are also considered relevant and intuitive

by domain experts. The third and final challenge is concerned with achieving acceptable performance of query evaluation. The

evaluation of a query may require expensive checks on all process models (of which there may be thousands) and to deal with

this suitable index structures should be put in place. The effectiveness of these structures should be demonstrated empirically.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Programming—Distributed program-

ming; Parallel programming; D.2.0 [Software Engineering]: General; D.3.1 [Programming Languages]: Formal Definitions

and Theory—Semantics; Syntax; F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Languages—Pro-

cess models; H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—Query formulation; Relevance

feedback; Search process

General Terms: Design, Languages, Management, Theory

Additional Key Words and Phrases: Process, process model, process instance, process model collection, process model

repository, querying, process querying, searching, retrieving

ACM Reference Format:

Artem Polyvyanyy, Arthur H.M. ter Hofstede, Marcello La Rosa, and Chun Ouyang. 2014–2015. Process Query Language:

Design, Implementation and Evaluation. ACM Trans. Embedd. Comput. Syst. 9, 4, Article 39 (March 2010), 13 pages.

DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

Through the application of methods and techniques from the field of business process management,
organisations can identify, model, analyse, deploy, and diagnose their business processes. This
process-oriented thinking provides great benefits as making processes explicit through formal high-
level representations, i.e. process models, allows them to subject these processes to various forms
of analysis, to use them as the basis for automated support, and to adapt them more easily as well
as more rapidly to continual changes imposed by the organisation’s environment, both internal and
external. As a consequence, some organisations have collected large numbers of process models and
their maintenance poses significant challenges.

Authors’ address: A. Polyvyanyy, A.H.M. ter Hofstede, M. La Rosa, and C. Ouang, Business Process Management Discipline,
Information Systems School, Science & Engineering Faculty, Queensland University of Technology, Brisbane, Australia.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the first
page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may
be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
© 2010 ACM 1539-9087/2010/03-ART39 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:2 A. Polyvyanyy et al.

Process models tend to evolve over time, new models may merge, which may need to be informed
by existing models, and models may need to be merged. To support these activities, it should
be possible to query a potentially large process model repository to retrieve models with certain
characteristics. Current process model query languages, of which perhaps the most prominent
proponent is BPMN-Q, predominantly focus on syntactic aspects of process models. Hence queries
are based on paths, which are formed by direct succession relations between model elements.

More powerful than a syntactic approach to querying would be an approach based on semantic
relations between tasks, e.g. relations that capture that certain tasks need to be executed in order
or in parallel or can never be executed as part of the same process instance. Semantic relations are
essential when one needs to explore whether certain process behaviours are possible or not.

The added retrieval power of a semantic query language comes at a price. Semantic relations cover
a broad spectrum of inter-task dependencies and may be expressed through temporal logic. Temporal
logic is a form of modal logic that includes temporal operators and which can be used to reason
over the behaviour of systems over time. Temporal logic is powerful enough to be able to express
properties that are undecidable [Esparza and Nielsen 1994]. Hence a semantic query language needs
to be careful in terms of the semantic inter-task dependencies that it supports.

Decidability of semantic inter-task relations is a factor in choosing which relations to support
in a query language, but it is not the one. While some relations are decidable, their use may not
be very intuitive to stakeholders, in this case experts that are likely to end up formulating queries
over process model collections. It is important that a relation occurs frequently enough in queries to
warrant support and that its formal meaning is close to its perceived meaning. Another consideration
is that query evaluations are performed in a “reasonable” amount of time as it is anticipated that
stakeholders may wish to see the answers to their queries in (almost) real-time.

In this paper a specific process model query language is proposed that is based on a selection of
semantic inter-task relations. The Process Query Language (PQL) is a special-purpose programming
language for managing process models based on information about process instances that they
describe. PQL programs are also called queries. The first version of the PQL language, proposed
in this paper, allows formulating search intents for retrieving process models from collections or
repositories thereof based on information held in process instances.

The selected semantic inter-task relations supported by PQL, termed predicates in PQL, are shown
to be decidable through the application of model checking, an automated technique which, given a
finite-state model of a system (e.g., a process model) and a formal property (e.g., a temporal logic
formula), systematically checks whether this property holds for (a given state in) that model [Baier
and Katoen 2008]. In addition, these predicates are validated with domain experts in terms of their
perceived usefulness and intuitiveness. To further facilitate query formulation, PQL is not only
provided with an abstract syntax but also a concrete one, which is inspired by SQL. The runtime
environment for PQL makes uses of indexes to enhance the performance of query evaluation. Indexes
are special data structures that improve the speed of computations of behavioral operators trading
off time for their construction with space for their storage. Performance of query evaluation is
demonstrated through a set of experiments with a real-life process model collection.

2. PQL SYNTAX

2.1. Abstract Syntax

This section discusses the syntax of the PQL language in the form of an abstract syntax, which is
also often referred to as an (abstract) grammar. The grammar of the PQL language is defined using
the notation introduced in [Meyer 1990]. In this notation, the abstract grammar of a programming
language consists of a finite set of names of constructs and a finite set of productions, each associated
with a construct. Each construct describes the structure of a set of objects, also called specimens of
the language, using productions of three types; these are aggregate, choice, and list productions.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Process Query Language: Design, Implementation and Evaluation 39:3

The top construct of the abstract grammar of the PQL language is Query. It captures the core
structure of all PQL programs, i.e., queries.

Query ≜ vars ∶ Variables; atts ∶ Attributes; locs ∶ Locations; pred ∶ Predicate

The Query construct (see above, on the left hand side) is defined as an aggregate production
composed of four components (see above, on the right hand side); in general, an aggregate production
defines a construct that is made of a fixed number of components. The components are separated by
semicolons, each preceded by a tag indicating its role within the construct. Thus, every PQL query is
composed of variables, attributes, locations, and a predicate, which are distinguished via tags vars,
atts, locs, and pred, respectively. Intuitively, a PQL query specifies a search intent to discover the
attributes of all process models in the collection of models identified by the locations that satisfy the
predicate, where the evaluation of the predicate relies on information stored in the variables. The
order in which the various specimens are listed in aggregate productions is irrelevant for the sake
of the abstract grammar specification. This order is important in the context of the next section, in
which the concrete syntax of the PQL language is proposed.

The Query construct seen above defines a class of PQL queries. One can specify an instance of
this class using abstract syntactic expressions. For example, the statement q ≜ Query(vars ∶ vs; atts ∶
as; locs ∶ ls; pred ∶ p) defines a query having vs, as, ls, and p, as variables, attributes, locations, and a
predicate, respectively (assuming that all the specimens, i.e., vs, as, ls, and p, are provided).

In PQL, variables, attributes, and locations are defined as list productions, where a list production
defines a sequence of zero, one, or more specimens of another construct.

Variables ≜ Variable
∗

Attributes ≜ Attribute
+

Locations ≜ Location
+

Therefore, a PQL query defines a sequence of zero, one, or more variables, denoted by Variable∗;
the asterisk symbol stands for the Kleene star—its standard language theory meaning. Every sequence
of attributes must contain at least one attribute, denoted by Attribute+; note that the asterisk symbol
is replaced by a plus sign to signify that the list of locations cannot be empty. Similarly, every sequence
of locations must contain at least one location specimen.

PQL introduces a dedicated construct, denoted by Variable, to define variables.

Variable ≜ name ∶ VariableName; tasks ∶ SetOfTasks

A PQL variable associates a symbolic name with a set of tasks, or to be more precise, with a collection
of abstract concepts that represent tasks. Tasks are introduced in the PQL language to refer to atomic
units of observable behavior that are captured in process models. Each variable is an aggregate of two
constructs: a variable name (name ∶ VariableName), and a collection of tasks (tasks ∶ SetOfTasks).
Such a separation of the variable name from its associated content allows the name to be used
independently of the exact information it represents. Thus, a variable name can be bound to a set of
tasks during run time, and the content of the set may change during evaluation of the query. When a
predicate of some PQL query gets evaluated, every variable name that is mentioned in the predicate
is replaced by the corresponding set of tasks.

The PQL language introduces the Attribute construct to allow specifying those process model
properties that must be retrieved in a response to a successful query matching exercise.

Attribute ≜ Universe ∣ AttributeID ∣ AttributeName ∣ AttributeModel

A PQL attribute can be anything that identifies a single property or a collection of properties of
a process model. In the first version of the PQL language, the Attribute construct is associated
with a choice production that allows for four alternatives; in general, a choice production defines
a construct as a set of alternatives. The alternatives are separated by vertical bar symbols. Every
attribute is either the universe attribute, denoted by Universe, the identifier property, denoted by
AttributeID, the name property, denoted by AttributeName, or a formal specification property,

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:4 A. Polyvyanyy et al.

denoted by AttributeModel. The universe attribute has a special meaning. It refers to a collection
of all properties that are associated with process models in the process model repository.

In the PQL language, locations are used to address process models that are of interest to the search
intents of queries, i.e., those models that should be matched against the queries.

Location ≜ Universe ∣ LocationID ∣ LocationDirectory

A location can generally be anything that identifies a single process model or a collection of process
models. It is defined as a choice production that allows for three alternatives. A location is either
the universe location, denoted by Universe, an identifier location, denoted by LocationID, or a
directory location, denoted by LocationDirectory. The universe location is designed to address
all process model in the scope of the query (usually, all process models in the repository). Identifier
locations are introduced in the PQL language to allow fine-grained targeting of models based on
their unique identifiers. We assume that repositories do indeed tag models with unique identifiers,
e.g., universally unique identifiers (UUIDs) or integer identifiers. Finally, a directory location allows
addressing models that are stored in a particular directory of the repository. For example, a directory
location can be a name of a directory, specified as a character string, an URI [URI Planning Interest
Group 2001], or an XPath expression [W3C XSL/XML Query Working Groups 2007].

PQL provides several alternatives for specifying a set of tasks. A set of tasks can be defined as an
enumeration of tasks, a result of standard operations on sets of tasks, information stored in a variable,
a construction macro, or a dynamically-valued constant. These various possibilities are captured in
the SetOfTasks construct of the PQL grammar.

SetOfTasks ≜ VariableName ∣ Universe ∣ SetOfTasksLiteral ∣ SetOfTasksConstruction

∣ Union ∣ Intersection ∣ Difference

The SetOfTasks construct is defined as a choice production. One can use the VariableName
construct to refer to the set of tasks associated with a name of some variable. Alternatively, one
can specify a set of tasks using the Universe construct. The Universe construct, when used in the
context of a reference to a set of tasks, constitutes a dynamically-valued constant that refers to the set
of all tasks of the process model currently being matched to the query. The content of this set should
be created at initialization time, freshly for every new process model that gets matched to the query.

The PQL language proposes a notation to specify set of tasks literals, i.e., a notation for representing
sets of tasks as fixed values. Set of tasks literals can be defined using the SetOfTasksLiteral
construct, which is specified as a list production of zero, one, or more tasks.

SetOfTasksLiteral ≜ Task
∗

As mentioned above, tasks are abstract representations of atomic units of observable behavior.

Task ≜ label ∶ Label; sim ∶ Similarity

A PQL task is defined as an aggregate of two components: a label, denoted by label ∶ Label, and a
similarity degree threshold, denoted by sim ∶ Similarity. The idea is that given a label of a task
one may be interested in all the tasks of which the label has (at least) a certain degree of similarity to
the given label.

Another way to specify a set of tasks is to construct it. For this purpose, one can rely on the
SetOfTasksConstruction construct, which is defined as a choice production below.

SetOfTasksConstruction ≜ UnaryPredicateConstruction ∣ BinaryPredicateConstruction

Given a set of tasks and a unary behavioral primitive, the UnaryPredicateConstruction con-
struct can be used to compose a set of tasks that contains every task from the given set and
for which the given behavioral primitive holds. The given behavioral primitive must be eval-
uated in the context of the process model that is being matched to the query. Similarly, the
BinaryPredicateConstruction construct is introduced in the PQL language to allow select-
ing those tasks from a given set of tasks for which certain binary behavioral primitive holds, either
with at least one or with all tasks taken from another given set of tasks. The choice of a quantifier type,

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Process Query Language: Design, Implementation and Evaluation 39:5

either the existential or universal, to be used during the above described selections is implemented
via the AnyAll construct.

UnaryPredicateConstruction ≜ name ∶ UnaryPredicateName; tasks ∶ SetOfTasks

BinaryPredicateConstruction ≜ name ∶ BinaryPredicateName; tasks1 ∶ SetOfTasks;

tasks2 ∶ SetOfTasks; q ∶ AnyAll

AnyAll ≜ Any ∣ All

Both, the UnaryPredicateConstruction construct and the BinaryPredicateConstruction
construct, are associated with aggregate productions. The AnyAll construct is specified as a choice
between the Any qualifier versus the All qualifier, where Any and All stand for the existen-
tial quantifier type and the universal quantifier type, respectively. The PQL language uses the
UnaryPredicateName construct and the BinaryPredicateName construct to refer to unary be-
havioral primitives and binary behavioral primitives, respectively. The first edition of the PQL
language supports two unary and six binary behavioral primitives. These are the CanOccur
and AlwaysOccurs unary behavioral primitives, and the CanConflict, CanCooccur, Conflict,
Cooccur, TotalCausal, and TotalConcurrent binary behavioral primitives.

UnaryPredicateName ≜ CanOccur ∣ AlwaysOccurs

BinaryPredicateName ≜ CanConflict ∣ CanCooccur ∣ Conflict

∣ Cooccur ∣ TotalCausal ∣ TotalConcurrent

Finally, a set of tasks can be constructed from other sets of tasks via the application of the fundamental
set operations of union, intersection, and difference, denoted by the Union, Intersection, and
Difference construct, respectively.

The PQL language proposes several ways to specify predicates; all the options are captured in the
choice production that is associated with the Predicate construct.

Predicate ≜ UnaryPredicate ∣ BinaryPredicate ∣ UnaryPredicateMacro

∣ BinaryPredicateMacro ∣ SetPredicate ∣ TruthValue ∣ Negation

∣ Conjunction ∣ Disjunction ∣ LogicalTest

For instance, predicates can be captured as specimens of UnaryPredicate or BinaryPredicate.

UnaryPredicate ≜ name ∶ UnaryPredicateName; task ∶ Task

BinaryPredicate ≜ name ∶ BinaryPredicateName; task1 ∶ Task; task2 ∶ Task

The UnaryPredicate construct and the BinaryPredicate construct are introduced in the PQL
language to allow checking the unary behavioral primitives and the binary behavioral primitives, re-
spectively. Both these constructs are aggregations of a name (specified by the UnaryPredicateName
construct or the BinaryPredicateName construct) and a respective number of Task constructs;
one for the UnaryPredicate construct and two for the BinaryPredicate construct.

The PQL language utilizes a well-known mechanism of macros for combining results of several
UnaryPredicate or BinaryPredicate checks into a result of a single statement.

UnaryPredicateMacro ≜ name ∶ UnaryPredicateName; tasks ∶ SetOfTasks; q ∶ AnyAll

BinaryPredicateMacro ≜ BinaryPredicateMacroTaskSet ∣ BinaryPredicateMacroSetSet

The aggregate production associated with the UnaryPredicateMacro construct is composed
of a reference to a unary behavioral primitive (name ∶ UnaryPredicateName), a set of tasks
(tasks ∶ SetOfTasks), and a quantifier (q ∶ AnyAll). Intuitively, a single macro statement p ≜
UnaryPredicateMacro(name ∶ n; tasks ∶ ts; q ∶ x) is equivalent to a complex check of whether
it holds that for at least one (if x is set to Any) or for every (if x is set to All) task t in set of tasks
ts statement UnaryPredicate(p.name; task ∶ t) evaluates to true. Similarly, one can rely on the

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:6 A. Polyvyanyy et al.

BinaryPredicateMacro construct to combine results of multiple BinaryPredicate checks.

BinaryPredicateMacroTaskSet ≜ name ∶ BinaryPredicateName; task ∶ Task;

tasks ∶ SetOfTasks; q ∶ AnyAll

BinaryPredicateMacroSetSet ≜ name ∶ BinaryPredicateName; tasks1 ∶ SetOfTasks;

tasks2 ∶ SetOfTasks; q ∶ AnyEachAll;

AnyEachAll ≜ Any ∣ Each ∣ All

The BinaryPredicateMacroTaskSet construct is designed to allow checking whether a certain
binary behavioral primitive (name ∶ BinaryPredicateName) holds between a given task (task ∶
Task) and either at least one (if the AnyAll construct is instantiated with the Any specimen) or
every (if the AnyAll construct is instantiated with the All specimen) task in a given set of tasks
(tasks ∶ SetOfTasks). Similarly, the BinaryPredicateMacroSetSet construct can be used to
check whether a binary behavioral primitive of interest evaluates to true for certain pairs of tasks in
the Cartesian product of two given sets of tasks. Note for the option to use the Each qualifier as a
specimen of the AnyEachAll construct in the respective production above. When employed, this
option induces a check of whether for every task in one given set of tasks the specified behavioral
relation holds with some task from the other given set of tasks.

The PQL language supports checks of basic binary relations between sets of tasks. These are
captured by the choice production associated with the SetPredicate construct.

SetPredicate ≜ TaskInSetOfTasks ∣ SetComparison

TaskInSetOfTasks ≜ task ∶ Task; tasks ∶ SetOfTasks

SetComparison ≜ tasks1 ∶ SetOfTasks; oper ∶ SetComparisonOperator; tasks2 ∶ SetOfTasks

SetComparisonOperator ≜ Identical ∣ Different ∣ OverlapsWith

∣ SubsetOf ∣ ProperSubsetOf

The PQL language allows checking if a task is a member of a given set of tasks. This can be
accomplished using the TaskInSetOfTasks construct, which is specified as an aggregation of
a task (task ∶ Task) and a set of tasks (tasks ∶ SetOfTasks). Moreover, the PQL language allows
checking several binary relations between sets of tasks using the SetComparison construct. The
SetComparison construct is composed of two sets of tasks (tasks1 ∶ SetOfTasks and tasks2 ∶
SetOfTasks) and a reference to a comparison operator (oper ∶ SetComparisonOperator). The
PQL language supports five comparison operations. They specify checks of whether two sets of tasks
are identical (Identical), different (Different), overlap (OverlapsWith), or whether one set of
tasks is a subset (SubsetOf) or a proper subset (ProperSubsetOf) of the other set of tasks.

As PQL is designed to utilize three-valued reasoning, it operates with three truth values: true,
false, and unknown. This is reflected in the three literals of the choice production associated with the
TruthValue construct, which is proposed below.

TruthValue ≜ True ∣ False ∣ Unknown

To allow complex logical statements on atomic propositions, PQL supports standard logical opera-
tions. These are negation (Negation), conjunction (Conjunction), and disjunction (Disjunction).

To permit for a three-valued logic that is used with PQL to be functionally complete, the language
includes a test of whether a given three-valued logic value is unknown. This check is reflected
in the IsUnknown option of the LogicalTest construct proposed below, which for the sake of
completeness allows for the total of six different tests of whether a three-valued logic value is or is
not equal to a certain truth value.

LogicalTest ≜ IsTrue ∣ IsNotTrue ∣ IsFalse ∣ IsNotFalse ∣ IsUnknown ∣ IsNotUnknown

For a grammar of a language to be complete, all its constructs must be specified in terms of
well-defined components, called the terminal constructs. The following constructs are the termi-
nal constructs of the PQL grammar: Any, All, Each, Universe, AttributeID, AttributeName,
AttributeModel, Identical, Different, OverlapsWith, SubsetOf, ProperSubsetOf, True,

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Process Query Language: Design, Implementation and Evaluation 39:7

False, Unknown, as well as all the constructs that are parts of the choice productions associated
with the UnaryPredicateName and BinaryPredicateName constructs. All the above mentioned
constructs do not have an internal structure and, thus, are atomic constructs of the PQL language.

Several of the proposed PQL constructs can be defined in terms of well-known sets. For instance,
in the discussion above, we hint at the fact that LocationID can be specified as an integer. This
can be captured rigorously in the production LocationID ≜ value ∶Z, where Z is the symbol often
used in mathematics to denote the set of all integers. Similarly, we specify LocationDirectory,
VariableName, and Similarity, as LocationDirectory ≜ value ∶ S, VariableName ≜ id ∶V,
and Similarity ≜ value ∶ [0 ..1], respectively; here, S and V are the set of all character strings and
the set of all legal variable names, respectively. Note that set V is defined in the next section.

Some of the PQL constructs are still not defined in terms of terminal constructs. The PQL language
trivially defines the Negation construct and all the six options associated with the LogicalTest
construct in terms of a single Predicate component, e.g., Negation ≜ pred ∶ Predicate,
IsTrue ≜ pred ∶ Predicate, etc. Finally, for the sake of space considerations, at this stage we omit
rigorous definitions of five PQL constructs: Conjunction, Disjunction, Union, Intersection,
and Difference. Intuitively, Conjunction and Disjunction can be defined as sets of predicates,
whereas Union, Intersection, and Difference can be specified as collections of sets of tasks.
However, any definition of priorities for the operations that the above stated constructs represent in
terms of grammar rules is rather lengthy and is driven by semantic, rather than syntactic, rules. In the
next section, we discuss priorities of various operations that are supported in PQL, whereas missing
rigorous specifications of the five mentioned constructs can be found in Appendix A.

2.2. Concrete Syntax

The abstract syntax of PQL is independent of any particular representation. This section proposes
a mapping from the abstract syntax of PQL to its specific encoding. This encoding constitutes one
possible concrete syntax of the PQL language, i.e., its machine- and human-readable representation.

The first concrete syntax of the PQL language proposed in this section is inspired by SQL—
a programming language for managing data stored in a relational database management system
(DBMS) [Date and Darwen 1997]. Being inspired by SQL, we intent to keep the core structure of
concrete PQL queries as similar as possible to that of SQL queries and to reuse SQL keywords in
PQL, given that the contexts are similar. The reason for this is threefold:

○ Despite addressing different domains, i.e., dynamic processes versus static data, both languages
serve the same purpose—the purpose of querying for information. Note that SQL was originally
proposed to retrieve data stored in quasi-relational DBMS [Chamberlin and Boyce 1974].
○ SQL is a widely used standard that is supported by just about every DBMS on the market. As a

result, its syntax is well-recognized by technical specialists and analysts. By closely following the
concrete syntax of SQL, PQL becomes readily usable by a wide range of stakeholders.
○ As suggested by several interviewees, it would be beneficial for the syntax of the envisioned

query language to resemble that one of SQL. For example, one interviewee commented: “From an
overall strategic point of view it’ll bring a lot of benefits because different parts of the organization
will be able to work together by using some kind of a structured query language (SQL)”.

Given a construct of an abstract grammar, one can specify its concrete syntax as a function that
yields all its specific forms. In this section, PQL is defined as a textual language. Hence, for each
PQL construct, its concrete syntax is given as a function that takes a specimen of the respective
abstract construct as input and returns a collection of character strings that are accepted as its concrete
encodings. We shall denote such a function by the name of the respective construct with subscript c.

For example, the concrete syntax of a specimen of the Query construct is defined as follows.

Queryc(q ∶ Query) ≜ Variablesc(q.vars)

‘❙❊▲❊❈❚’ Attributesc(q.atts)

‘❋❘❖▼’ Locationsc(q.locs)

(‘❲❍❊❘❊’ Predicatec(q.pred))? ‘;’

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:8 A. Polyvyanyy et al.

We use regular expressions [Aho and Ullman 1992] to define the concrete syntax of PQL specimens.
Hence, as per the above definition, a PQL query is a character string that starts with a specification of
variables, followed by the ❙❊▲❊❈❚ keyword, followed by a specification of attributes, followed by the
❋❘❖▼ keyword, followed by a specification of locations, followed by the ❲❍❊❘❊ keyword, followed by
a specification of a predicate, followed by the semicolon mark, i.e., ‘;’. There can be an arbitrary
number of whitespace characters between any two subsequent components of a query string. The
order of various components is fixed. Note that the presence of the ❲❍❊❘❊ clause in a PQL query is
optional, i.e., the ❲❍❊❘❊ keyword and the specification of the predicate can be skipped.

The reader might have already noticed that the core structure of a PQL query is similar to that one
of an SQL query that is signified with the declarative ❙❊▲❊❈❚ statement and is used to formulate an
intent for retrieving data from one or more database tables or expressions.

Specimens of PQL constructs that are associated with list productions must be encoded as string
concatenations of concrete forms of their components and whitespace characters. Often, we inject
special symbols between every two subsequent components and/or at the beginning and end of the
respective encodings. For example, the concrete syntax of a list of variables is defined as follows.

Variablesc(vs ∶ Variables) ≜ isEmpty(vs) ? ‘’ ∶ Variablec(vs.FIRST) Variablesc(vs.TAIL)

That is, the encoding of the empty list of variables is the empty string. However, if a list of variables
contains at least one element, its encoding is constructed as a concatenation of a concrete form of its
first element, denoted by vs.FIRST , and an encoding of the list of its all other elements, denoted by
vs.TAIL. The concrete syntax of a PQL variable is defined below.

Variablec(v ∶ Variable) ≜ VariableNamec(v.name) ‘=’ SetOfTasksc(v.tasks) ‘;’

The concrete syntax of all other specimens of PQL constructs that are associated with list productions
is defined similar to that one of the Variables construct seen above. However, all these encodings
expect to include special symbols between every two subsequent components. This is the comma
symbol, i.e., ‘,’, for specimens of Attributes, Locations, and SetOfTasksLiteral, and the
PQL keywords ❯◆■❖◆, ■◆❚❊❘❙❊❈❚, ❊❳❈❊P❚, ❆◆❉, and ❖❘, for specimens of Union, Intersection,
Difference, Conjunction, and Disjunction, respectively. Additionally, every encoding of a
specimen of the SetOfTasksLiteral construct must begin with the opening curly bracket, i.e., ‘
{’, and end with the closing curly bracket, i.e., ‘}’. For instance, the character string ‘{"Buy
item","Purchase product"}’ is a valid encoding of a specimen of the SetOfTasksLiteral
construct that contains two elements; here, we follow the standard notation for specifying fixed sets.
In the example above, strings "Buy item" and "Purchase product" are valid encodings of tasks.
In general, the concrete encoding of a PQL task is defined as follows.

Taskc(t ∶ Task) ≜ ‘∼’ ‘"’ Labelc(t.label) ‘"’

∣ ‘"’ Labelc(t.label) ‘"’ (‘[’ Similarityc(t.sim) ‘]’)?

Labels of PQL tasks are always enclosed in double quotes. A label can be preceded by the tilde
symbol, i.e., ‘∼’, or succeeded by an encoding of a similarity degree threshold enclosed in square
brackets. The tilde symbol denotes the fact that one is interested in all the tasks of which the label
has a degree of similarity to the specified label that is equal or larger than some preconfigured value.
A degree of similarity must be specified as a decimal representation of a real number greater or equal
to zero and less than or equal to one, e.g., 0.5 or .95.

Every specimen of a construct that is associated with a choice production is a specimen of one of
the constructs from the list of alternatives of the choice production. Hence, a concrete syntax of an
abstract grammar can (and often does) omit special encodings to signify choice productions, which
is the case for the concrete syntax of PQL that is being proposed here. Thus, in the sequel, we only
propose concrete encodings for the remaining aggregate productions of the PQL grammar.

A specimen of the Attribute construct is a specimen of one out of four terminal constructs. These
are Universe, AttributeID, AttributeName, and AttributeModel. In PQL, they are denoted
by character strings ‘*’, ‘id’, ‘name’, and ‘model’, respectively. Similarly, a specimen of the
Location construct is a specimen of either Universe, or LocationID, or LocationDirectory.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Process Query Language: Design, Implementation and Evaluation 39:9

A specimen of LocationID is an integer, whereas a specimen of LocationDirectory is a character
string; PQL character strings are sequences of characters enclosed in double quotes.

A name x ∈V of a PQL variable, i.e., a concrete encoding of a specimen of the VariableName
construct, may contain lower case letters from the English alphabet, digits, and the underscore
symbol, i.e., ‘ ’. It is necessary to use a letter or the underscore symbol at the start of a variable name;
digit at start are not allowed. Subsequent characters may be letters, digits, or underscore symbols.

Next, we propose the concrete syntax for specimens of the UnaryPredicateConstruction
construct and the BinaryPredicateConstruction construct.

UnaryPredicateConstructionc(upc ∶ UnaryPredicateConstruction) ≜

‘GetTasks’UnaryPredicateNamec(upc.name) ‘(’ SetOfTasksc(upc.tasks) ‘)’

BinaryPredicateConstructionc(bpc ∶ BinaryPredicateConstruction) ≜

‘GetTasks’BinaryPredicateNamec(bpc.name)

‘(’ SetOfTasksc(bpc.tasks1) ‘,’ SetOfTasksc(bpc.tasks2) ‘,’ AnyAllc(bpc.q) ‘)’

The concrete encodings of specimens of these constructs follow the syntax for specifying function
calls that is used in many well-celebrated programming languages, i.e., a name of a function to
be called is followed by a comma-separated list of parameters which is enclosed in parentheses.
Here, the names of functions are obtained by prefixing ‘GetTasks’ to names of unary and binary
predicates. The remaining components are specified as parameters of the respective function calls.

PQL exercises similar principles when specifying the concrete syntax of predicates and macros,
both for unary and binary cases. The concrete syntax for specifying predicates proceeds as follows.

UnaryPredicatec(up ∶ UnaryPredicate) ≜

UnaryPredicateNamec(up.name) ‘(’ Taskc(up.task) ‘)’

BinaryPredicatec(bp ∶ BinaryPredicate) ≜

BinaryPredicateNamec(bp.name) ‘(’ Taskc(bp.task1) ‘,’ Taskc(bp.task2) ‘)’

The only difference is that the names of these imitated function calls are not prefixed, but are solely
composed of the concrete encodings of the respective predicate names.

It is proposed that the concrete syntax for denoting the PQL macros overloads the syntax for
specifying function calls which encode the PQL predicates, i.e., names of functions and types of
outputs are the same, both for a predicate and the respective macro, but types of inputs differ.

UnaryPredicateMacroc(upm ∶ UnaryPredicateMacro) ≜

UnaryPredicateNamec(upm.name) ‘(’ SetOfTaskc(upm.tasks) ‘,’ AnyAllc(upm.q) ‘)’

BinaryPredicateMacroTaskSetc(bpm ∶ BinaryPredicateMacroTaskSet) ≜

BinaryPredicateNamec(bpm.name)

‘(’ Taskc(bpm.task) ‘,’ SetOfTaskc(bpm.tasks) ‘,’ AnyAllc(bpm.q) ‘)’

BinaryPredicateMacroSetSetc(bpm ∶ BinaryPredicateMacroSetSet) ≜

BinaryPredicateNamec(bpm.name)

‘(’ SetOfTaskc(bpm.tasks1) ‘,’ SetOfTaskc(bpm.tasks2) ‘,’ AnyEachAllc(bpm.q) ‘)’

The above proposed syntax rules rely on the concrete encodings of AnyAll and AnyEachAll, which
when instantiated are specified as specimens of Any, Each, or All. These are denoted by the PQL
keywords ❆◆❨, ❊❆❈❍, and ❆▲▲, respectively.

A specimen of the TaskInSetOfTasks construct can be typed in as follows.

TaskInSetOfTasksc(in ∶ TaskInSetOfTasks) ≜ Taskc(in.task) ‘■◆’ SetOfTaskc(in.tasks)

That is, every character string that starts with an encoding of a task, which is followed by the PQL
keyword ■◆, and ends with an encoding of a set of tasks, specifies a specimen of TaskInSetOfTasks.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:10 A. Polyvyanyy et al.

A specimen of the SetComparison construct can be specified in this concrete syntax of PQL as
two encodings of sets of tasks with a representation of a comparison operator in between.

SetComparisonc(comp ∶ SetComparison) ≜

SetOfTaskc(comp.tasks1) SetComparisonOperatorc(comp.oper) SetOfTaskc(comp.tasks2)

A set comparison operator is instantiated in PQL via a choice between specimens of terminal
constructs Identical, Different, OverlapsWith, SubsetOf, and ProperSubsetOf, which are
defined in this concrete syntax of PQL via the keywords ❊◗❯❆▲❙, ◆❖❚ ❊◗❯❆▲❙, ❖❱❊❘▲❆P❙ ❲■❚❍,
■❙ ❙❯❇❙❊❚ ❖❋, and, ■❙ P❘❖P❊❘ ❙❯❇❙❊❚ ❖❋, respectively. The specimens of the terminal constructs
True, False, and Unknown get encoded as the keywords ❚❘❯❊, ❋❆▲❙❊, and ❯◆❑◆❖❲◆, respectively.

Predicate names in PQL are encoded as names of the respective terminal constructs, e.g., the
unary predicate construct CanOccur and the binary predicate construct TotalCausal have concrete
encodings CanOccur and TotalCausal, respectively.

Finally, the concrete encodings of the specimens of the Negation and the six logical test constructs
are given below.

Negationc(not ∶ Negation) ≜ ‘◆❖❚’ Predicatec(not.pred)

IsTruec(test ∶ IsTrue) ≜ Predicatec(test.pred) ‘■❙’ ‘❚❘❯❊’

IsNotTruec(test ∶ IsNotTrue) ≜ Predicatec(test.pred) ‘■❙’ ‘◆❖❚’ ‘❚❘❯❊’

IsFalsec(test ∶ IsFalse) ≜ Predicatec(test.pred) ‘■❙’ ‘❋❆▲❙❊’

IsNotFalsec(test ∶ IsNotFalse) ≜ Predicatec(test.pred) ‘■❙’ ‘◆❖❚’ ‘❋❆▲❙❊’

IsUnknownc(test ∶ IsUnknown) ≜ Predicatec(test.pred) ‘■❙’ ‘❯◆❑◆❖❲◆’

IsNotUnknownc(test ∶ IsNotUnknown) ≜ Predicatec(test.pred) ‘■❙’ ‘◆❖❚’ ‘❯◆❑◆❖❲◆’

These encodings rely on the use of the PQL keywords ◆❖❚, ■❙, ❚❘❯❊, ❋❆▲❙❊, ❯◆❑◆❖❲◆, and the
concrete encoding of the Predicate construct, which is defined by concrete encodings of all the
alternatives associated with the corresponding choice production.

We envision introduction of other specific encodings of the abstract syntax of the PQL language,
e.g., a visual encoding of PQL queries. We believe that availability of different concrete encodings
will make the PQL language accessible to a wider audience.

A. PQL GRAMMAR

This appendix specifies the complete grammar of the PQL language captured in the ANTLR notation.
ANTLR (ANother Tool for Language Recognition) is a parser generator for reading and translating
structured text or binary files [Parr and Quong 1995; Parr 2013]. ANTLR can take a grammar of a
language as input and generate source code for a parser that can build and walk syntax trees [Meyer
1990]. The language must be specified using a context-free grammar which is expressed using
extended Backus-Naur Form [Hopcroft et al. 2006].

// A PQL v1 grammar for ANTLR v41

2

// [The "BSD licence"]3

// Copyright (c) 2014-2015 Artem Polyvyanyy4

// All rights reserved.5

6

// A PQL v1 grammar for ANTLR v47

8

grammar PQL;9

10

query : variables11

SELECT attributes12

FROM locations13

(WHERE predicate)? EOS ;14

15

variables : variable* ;16

variable : varName ASSIGN17

setOfTasks EOS ;18

19

varName : VARIABLE_NAME ;20

21

attributes : attribute (SEP attribute)* ;22

attribute : universe23

| attributeID24

| attributeName25

| attributeModel ;26

27

locations : location (SEP location)* ;28

location : universe29

| locationID30

| locationDirectory ;31

32

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Process Query Language: Design, Implementation and Evaluation 39:11

universe : UNIVERSE ;33

attributeID : ATTRIBUTE_ID ;34

attributeName : ATTRIBUTE_NAME ;35

attributeModel : ATTRIBUTE_MODEL ;36

locationID : INTEGER ;37

locationDirectory : STRING ;38

39

setOfTasks : tasks40

| union41

| intersection42

| difference ;43

44

tasks : (varName | universe)45

| setOfTasksLiteral46

| setOfTasksConstruction47

| setOfTasksParentheses ;48

49

setOfTasksLiteral :50

LB (task (SEP task)*)? RB ;51

52

task : approximate label53

| label (LSB similarity RSB)? ;54

approximate: TILDE ;55

label : STRING ;56

similarity : SIMILARITY ;57

58

setOfTasksConstruction :59

unaryPredicateConstruction60

| binaryPredicateConstruction ;61

62

unaryPredicateConstruction :63

(GET_TASKS)unaryPredicateName64

LP setOfTasks RP ;65

66

binaryPredicateConstruction :67

(GET_TASKS)binaryPredicateName68

LP setOfTasks SEP setOfTasks69

SEP anyAll RP ;70

71

anyAll : ANY | ALL ;72

73

unaryPredicateName : CAN_OCCUR74

| ALWAYS_OCCURS ;75

76

binaryPredicateName: CAN_CONFLICT77

| CAN_COOCCUR78

| CONFLICT79

| COOCCUR80

| TOTAL_CAUSAL81

| TOTAL_CONCUR ;82

83

predicate : proposition84

| conjunction85

| disjunction86

| logicalTest ;87

88

proposition: unaryPredicate89

| binaryPredicate90

| unaryPredicateMacro91

| binaryPredicateMacro92

| setPredicate93

| truthValue94

| parentheses95

| negation ;96

97

unaryPredicate : unaryPredicateName98

LP task RP ;99

100

binaryPredicate : binaryPredicateName101

LP task SEP task RP ;102

103

unaryPredicateMacro : unaryPredicateName104

LP setOfTasks SEP anyAll RP ;105

106

binaryPredicateMacro:107

binaryPredicateMacroTaskSet108

| binaryPredicateMacroSetSet ;109

110

binaryPredicateMacroTaskSet :111

binaryPredicateName LP task112

SEP setOfTasks SEP anyAll RP ;113

114

binaryPredicateMacroSetSet :115

binaryPredicateName116

LP setOfTasks SEP setOfTasks117

SEP anyEachAll RP ;118

119

anyEachAll : ANY | EACH | ALL ;120

121

setPredicate : taskInSetOfTasks122

| setComparison ;123

124

taskInSetOfTasks : task IN setOfTasks ;125

126

setComparison : setOfTasks127

setComparisonOperator128

setOfTasks ;129

130

setComparisonOperator : identical131

| different132

| overlapsWith133

| subsetOf134

| properSubsetOf ;135

136

truthValue : TRUE137

| FALSE138

| UNKNOWN ;139

140

logicalTest: isTrue141

| isNotTrue142

| isFalse143

| isNotFalse144

| isUnknown145

| isNotUnknown ;146

147

union : (tasks | difference |148

intersection) UNION (tasks |149

difference | intersection)150

(UNION (tasks | difference151

| intersection))* ;152

153

intersection : (tasks | difference)154

INTERSECTION155

(tasks | difference)156

(INTERSECTION (tasks157

| difference))* ;158

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:12 A. Polyvyanyy et al.

159

difference : tasks DIFFERENCE tasks160

| tasks DIFFERENCE161

difference ;162

163

negation : NOT proposition ;164

165

isTrue : proposition IS TRUE ;166

isNotTrue : proposition IS NOT TRUE ;167

isFalse : proposition IS FALSE ;168

isNotFalse : proposition IS NOT FALSE ;169

isUnknown : proposition IS UNKNOWN ;170

isNotUnknown : proposition IS NOT UNKNOWN ;171

172

disjunction : (proposition | logicalTest |173

conjunction) OR (proposition |174

logicalTest | conjunction) (OR175

(proposition | logicalTest176

| conjunction))* ;177

178

conjunction : (proposition | logicalTest)179

AND (proposition | logicalTest)180

(AND (proposition181

| logicalTest))* ;182

183

parentheses : LP proposition RP184

| LP conjunction RP185

| LP disjunction RP186

| LP logicalTest RP ;187

188

setOfTasksParentheses : LP varName RP189

| LP universe RP190

| LP setOfTasksLiteral RP191

| LP setOfTasksConstruction RP192

| LP union RP193

| LP difference RP194

| LP intersection RP195

| LP setOfTasksParentheses RP ;196

197

UNIVERSE : ’*’ ;198

ATTRIBUTE_ID : ’id’ ;199

ATTRIBUTE_NAME : ’name’ ;200

ATTRIBUTE_MODEL : ’model’ ;201

202

STRING : DQ (ESC_SEQ203

| ~(’\\’|’"’))* DQ ;204

INTEGER : ’0’ | ’1’..’9’ ’0’..’9’* ;205

VARIABLE_NAME: (’a’..’z’|’_’)206

(’a’..’z’|’0’..’9’|’_’)*;207

SIMILARITY : ’1’ | ’0’ (’.’ ’0’..’9’+)?208

| ’.’ ’0’..’9’+ ;209

210

LP : ’(’ ;211

RP : ’)’ ;212

LB : ’{’ ;213

RB : ’}’ ;214

LSB : ’[’ ;215

RSB : ’]’ ;216

DQ : ’"’ ;217

EOS : ’;’ ;218

SEP : ’,’ ;219

ASSIGN : ’=’ ;220

TILDE : ’~’ ;221

222

ESC_SEQ : ’\\’ (’\"’|’\\’|’/’|’b’|223

’f’|’n’|’r’|’t’)224

| UNICODE_ESC ;225

UNICODE_ESC : ’\\’ ’u’ HEX_DIGIT226

HEX_DIGIT HEX_DIGIT HEX_DIGIT ;227

HEX_DIGIT : (’0’..’9’|228

’a’..’f’|’A’..’F’) ;229

WS : [\r\t\n]+ -> skip ;230

LINE_COMMENT: ’--’ ~[\r\n]* -> skip ;231

232

SELECT : ’SELECT’ ;233

FROM : ’FROM’ ;234

WHERE : ’WHERE’ ;235

EQUALS : ’EQUALS’ ;236

OVERLAPS : ’OVERLAPS’ ;237

WITH : ’WITH’ ;238

SUBSET : ’SUBSET’ ;239

PROPER : ’PROPER’ ;240

GET_TASKS : ’GetTasks’ ;241

242

NOT : ’NOT’ ;243

AND : ’AND’ ;244

OR : ’OR’ ;245

246

ANY : ’ANY’ ;247

EACH : ’EACH’ ;248

ALL : ’ALL’ ;249

250

IN : ’IN’ ;251

IS : ’IS’ ;252

OF : ’OF’ ;253

254

TRUE : ’TRUE’ ;255

FALSE : ’FALSE’ ;256

UNKNOWN : ’UNKNOWN’ ;257

258

identical : EQUALS ;259

different : NOT EQUALS ;260

overlapsWith : OVERLAPS WITH ;261

subsetOf : IS SUBSET OF ;262

properSubsetOf : IS PROPER SUBSET OF ;263

264

UNION : ’UNION’ ;265

INTERSECTION : ’INTERSECT’ ;266

DIFFERENCE : ’EXCEPT’ ;267

268

CAN_OCCUR : ’CanOccur’ ;269

ALWAYS_OCCURS : ’AlwaysOccurs’ ;270

CAN_CONFLICT : ’CanConflict’ ;271

CAN_COOCCUR : ’CanCooccur’ ;272

CONFLICT : ’Conflict’ ;273

COOCCUR : ’Cooccur’ ;274

TOTAL_CAUSAL : ’TotalCausal’ ;275

TOTAL_CONCUR : ’TotalConcurrent’ ;276

REFERENCES

Alfred Aho and Jeffrey Ullman. 1992. Foundations of Computer Science. W.H. Freeman and Company.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Process Query Language: Design, Implementation and Evaluation 39:13

Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. MIT Press.

D. D. Chamberlin and R. F. Boyce. 1974. SEQUEL: A Structured English Query Language. In ACM SIGMOD. 249–264.

C.J. Date and H. Darwen. 1997. A Guide to the SQL Standard: A User’s Guide to the Standard Database Language SQL.
Addison-Wesley.

Javier Esparza and Mogens Nielsen. 1994. Decidability Issues for Petri Nets - A survey. Bulletin of the EATCS 52 (1994),
244–262.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. 2006. Introduction to Automata Theory, Languages, and Computa-

tion (3rd Edition). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Bertrand Meyer. 1990. Introduction to the Theory of Programming Languages. Prentice-Hall.

Terence John Parr. 2013. The Definitive ANTLR 4 Reference. Pragmatic Programmers, LLC.

Terence John Parr and Russell W. Quong. 1995. ANTLR: A Predicated- LL(k) Parser Generator. Software — Practice and

Experience (SPE) 25, 7 (1995), 789–810.

URI Planning Interest Group. 2001. URIs, URLs, and URNs: Clarifications and Recommendations 1.0. Technical Report.
W3C. http://www.w3.org/TR/uri-clarification/

W3C XSL/XML Query Working Groups. 2007. The XPath 2.0 Standard. (2007). http://www.network-theory.co.uk/w3c/xpath/

Received February 2007; revised March 2009; accepted June 2009

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

