Parsing Behavior: The Hierarchical
Nature of Concurrent Systems

Artem Polyvyanyy
Artem.Polyvyanyy@hpi.uni-potsdam.de

Behavioral models are the conceptual models that capture operational principles of
real-world or designed systems. A behavioral model defines the state space of a system
and the way the system can operate within its state space. A concurrent system allows
for several threads of computation to execute simultaneously in the system. Parsing is a
technique for discovering the structure of a behavioral model. The result of a parsing
is a hierarchical decomposition of a model into logically independent units of behavior.
In this paper, we report on two parsing techniques applicable for two different types of
behavioral models. Sect. 1 discusses a technique for parsing workflow graphs, whereas
Sect. 2 is devoted to parsing ordering relations. Finally, in Sect. 3, we sketch how
these two parsing techniques can be related to provide a solution to the problem of
structuring unstructured acyclic control flow specifications of concurrent systems under
the behavioral equivalence notion which preserves the level of observable concurrency
in the resulting structured model.

1 Parsing Workflow Graphs

Concurrent systems are often modeled using some kind of a directed flow graph, which
we call a workflow graph, e.g., these are systems modeled in BPMN, EPC, UML activity
diagrams, Petri nets, etc. A workflow graph can be parsed into a hierarchy of subgraphs
with a single entry and single exit (SESE fragments, or fragments). Such a fragment
can be addressed as a logically independent part of a concurrent system, in which the
semantics of the fragment must be clarified based on the semantics of the respective
modeling language. The result of the parsing procedure is a parse tree, which is the
containment hierarchy of all fragments of a workflow graph.

The Refined Process Structure Tree (RPST) is a technique for workflow graph parsing
which has various applications, e.g., translation between process languages, control-flow
and data-flow analysis, process comparison and merging, process abstraction, process
comprehension, model layout, and pattern application in process modeling. The RPST
has a number of desirable properties: The resulting parse tree is unique and modular,
where modular means that a local change in the workflow graph only results in a local
change of the parse tree. Furthermore, it is finer grained than any known alternative
approach and it can be computed in linear time. Finally, the RPST of a workflow graph
is the set of its canonical fragments, where a fragment is said to be canonical if it does
not overlap on the set of edges with any other fragment of the graph.
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In [17], we proposed an alternative way to compute the RPST that is simpler than the
one developed originally [20]. In particular, the computation is reduced to constructing
the tree of the triconnected components [5, 18] of a workflow graph in the special case
when every node has at most one incoming or at most one outgoing edge.

A triconnected graph is a graph such that if any two nodes are removed from the
graph, the resulting graph stays connected. A pair of nodes whose removal renders the
graph disconnected is called a separation pair. Triconnected components of a graph are
again graphs, smaller than the given one, that describe all separation pairs of the graph.
Each triconnected component belongs to one out of four structural classes: A trivial (T)
component consists of a single edge. A polygon (P) component represents a sequence
of components. A bond (B) stands for a collection of components that share a common
separation pair. Any other component is a rigid (R) component.

In this report, we only sketch the simplified procedure for construction of the RPST,
whereas for the details we refer the reader to [17]. The simplified procedure for comput-
ing the RPST of a workflow graph can be summarized as follows: First, we normalize a
workflow graph by splitting nodes that have more than one incoming and more than one
outgoing edge into two nodes. We then compute the RPST of the normalized workflow
graph, which coincides with its tree of the triconnected components, cf., Sect. 3.1 in [17].
Finally, we project the RPST of the normalized workflow graph onto the original graph
and obtain its RPST.

Figure 1(a) shows a workflow graph and its triconnected components. Triconnected
components are defined by dotted boxes, i.e., a triconnected component is composed
of edges that are inside or cross the boundaries of the corresponding box. The workflow
graph in Figure 1(a) is composed of two non-trivial triconnected components: P1
and B1. Note that names of components hint at their structural class. Figure 1(b)
shows the tree of the triconnected components of the graph in Figure 1(a), which is an
alternative representation of all triconnected components of a graph. Each node of the
tree represents a triconnected component that is composed of components that are its
descendants in the tree.

Figure 1: (a) A workflow graph and its triconnected component subgraphs, (b) the tree of the triconnected
components of (a), and (c) the normalized version of (a) and its triconnected component subgraphs

Figure 1 demonstrates the concept of node-splitting. If the splitting is applied to node y
of the graph in Figure 1(a), it results in the new graph given in Figure 1(c) with three
fresh elements: nodes xy and y*, and edge (. After splitting nodes y and z in the graph in
Figure 1(a), the graph in Figure 1(c) is a normalized version of the graph in Figure 1(a).
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After normalization, the simplified algorithm for constructing the RPST proceeds
by computing the tree of the triconnected components of the normalized graph. This
tree coincides with the RPST of the normalized graph, cf., [17]. Next, this tree must
be projected onto the original graph by deleting all the edges introduced during node-
splittings. The deletion of the edges may result in fragments which have a single child
fragment. This means that two different fragments of the normalized graph project onto
the same fragment of the original graph. We thus clean the tree by deleting redundant
occurrences of such fragments. The final stage of the algorithm for computing the RPST
of the workflow graph in Figure 1(a) is exemplified in Figure 2.
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Figure 2: (a) The tree of the triconnected components of the workflow graph in Figure 1(c), (b) the tree
from (a) without the fresh edges [ and m, (c) the RPST of the workflow graph in Figure 1(a), and (d) the
workflow graph from Figure 1(a) and its canonical fragments

The tree of the triconnected components of the normalized graph, cf., Figure 1(c),
consists of four triconnected components: P1, Bl, P2, and B2. Figure 2(a) shows the
corresponding tree of the triconnected components. One can see the RPST without
trivial fragments that correspond to the fresh edges [ and m in Figure 2(b). Observe
that P2 now specifies the same set of edges as B2. Therefore, we omit P2, which is
redundant, to obtain the tree given in Figure 2(c). This tree is the RPST of the original
graph that is given in Figure 1(a). Finally, Figure 2(d) visualizes the graph again together
with its canonical fragments. In comparison with the triconnected decomposition shown
in Figure 1(a) and Figure 1(b), by following the described procedure we additionally
discovered canonical fragment B2. P1, B1, and B2 are all the canonical fragments of
the workflow graph. For the proof of the fact that resulting tree is indeed the RPST of
the original graph we refer the reader to [16].

2 Parsing Ordering Relations

Concurrent systems can be described with the help of ordering relations between pairs
of tasks or pairs of occurrences of tasks. There exist different notions of ordering
relations, e.g., unfolding relations, cf., [4,11,12], behavioral profile [21], relations of the
a mining algorithm [19], etc. These relations are, essentially, behavioral abstractions
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that capture core behavioral characteristics of a system at different levels of detalil.
Examples for such behavioral characteristics are causality, conflict, and concurrency. In
this section, we discuss a technique of parsing ordering relations that can be applied
to any given notion of ordering relations. The parsing decomposes ordering relations
into clans, each with clear behavioral characteristics specific to the employed notion of
ordering relations. To make parsing possible, we give a structural characterization to
ordering relations, i.e., ordering relations are treated as a generalization of a directed
graph.

The adjacency array representation of a directed graph D = (V, E) is a coloring of
aset E5(V) = {(vi,v2) | v1,v3 € V, v1 # v}, where E C Ey(V), with two colors, e.g., 0
and 1. Therefore, an adjacency array of a directed graph can be given by an indicator
function Iy : E5(V) — {0,1}. The notion of a two-structure is a generalization of the
notion of a graph [3]. A two-structure allows an arbitrary coloring of the set E»(V). A
two-structure is an ordered pair S = (N, R) such that N is a nonempty finite set of
nodes, and R is an equivalence relation on Ey(N).

A two-structure can be seen as a complete directed graph with labeled (colored)
edges, where « : E5(N) — C'is a coloring function corresponding to the edge classes
such that e; R ey, if and only if a(e;) = a(eq); C'is a set of colors. Observe that a coloring
function « is not unique, as the choice of colors can be arbitrary.

Given the ordering relations, we treat them as a two-structure where nodes are tasks,
over which relations are defined, and colors of edges encode different types of relations.
An equivalence class of the equivalence relation of such a two-structure represents all
ordering relations of the same type, e.g., causality.

Figure 3: (a),(d) Directed graphs, and (b),(c),(e) two-structures

A directed graph that is defined by the pair (V,E), where V. = {a,b,¢,d} and
E = {(a,0),(c,a),(a,b),(c,b),(c,d)}, is shown in Figure 3(a), whereas Figure 3(b)
presents one of the possible corresponding two-structures (N, R). The two-structure
has two equivalence classes of edges, where one class contains edges F (drawn with
solid edges) and the other one contains edges F»(N) \ E (drawn with dotted edges).
Figure 3(c) shows the same two-structure using a simplified notation, i.e., symmetric
edges are drawn as two-sided arrows. Notice that the correspondence between the
two-structure and the graph is rather arbitrary, as one can also accept the two-structure
as such that corresponds to the graph in Figure 3(d) by exchanging the roles of its
equivalence classes. Alternatively, one can define a correspondence by using larger
sets of colors, e.g., the 2-structure given in Figure 3(e) uses four equivalence classes.

One of the central notions of the theory of two-structures is the notion of a clan. Let
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S = (N, R) be a two-structure. A node n € N distinguishes nodes m, k € N, if and only
if (n,m) and (n, k) are of different colors or (m,n) and (k,n) are of different colors. A
clan of a two-structure S = (N, R) is a set X C N, such that for all z,y € X and for all
z€ N\ X holds (z,z) R (z,y) and (z, 2) R (y, 2).

Let S = (IV, R) with |[N| > 1 and P be a partition of F5(NV) induced by R. It follows
immediately that (), N, and the singletons {n}, n € N, are clans of S. These clans
are the trivial clans of S. S is complete, if and only if |[P| = 1. S is linear, if and only
if |[P| = 2 and there exists a linear order (n4,...,n|y|) of elements of N, such that the
edges {(n;,n;) | i < j} form an equivalence class of R and the edges {(n;,n;) | < j}
form an equivalence class of R. S is primitive, if and only if it contains at least three
nodes and all clans in S are trivial.

Construction principles of a two-structure are defined by its decomposition into
factors and a quotient that gives the relations between the factors. Let S = (N, R) be a
two-structure. A partition y = { X, ..., X;} of N into nonempty clans is a factorization
of S. The quotient of S by a factorization y is a two-structure S/x = (x, R, ), where
(X1,Y1) R, (Xs,Ys),ifand only if (x1,y1) R (x9,y2) forsome z; € X;, y; € Y;, X,,Y; € x.
A decomposition (Sx,, ..., Sx,;S/x) of S consists of the factors Sy, with respect to a
factorization y = { X1, ..., X}} and the quotient S/x.

A nonempty clan X of S is prime, if and only if for all clans Y of S holds that X and
Y do not overlap. We denote by C(S) the set of all clans of S. We denote by P(S) the
set of all prime clans of S. A prime clan is maximal, if it is maximal with respect to
inclusion among proper prime clans of S, where a clan is proper if it is a proper subset
of N. We denote by P,....(S) the set of all maximal prime clans of S; if |N| = 1, then

mar( ) {N}

The maximal prime clans P,,...(S) of a two-structure S form a partition of N, i.e., the
domain of each two-structure can be partitioned by the domains of its maximal prime
clans. For each two-structure S, the quotient S/P,,....(S) is either primitive, or complete,
or linear, cf., [3].

By iteratively discovering maximal prime clans and deriving the quotient for each
factor that corresponds to an element of the decomposition one builds a hierarchy of
quotients. Such a hierarchy is unique for a given two-structure and can be seen as its
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Figure 4: (a) A two-structure, (b) clans of (a), and (c),(d) the hierarchy of clans of (a)

Figure 4 exemplifies the decomposition of a two-structure. Figure 4(a) shows a two-
structure which is composed of five nodes and has four equivalence classes on edges.
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Partition x = {{a}, {b,c}, {d, e}} is factorization of this two-structure. Two-structures
induced by subsets of nodes {a}, {b,c}, and {d, ¢} are, respectively, a trivial, a complete,
and a linear clan of the original two-structure. Clan P1 (of class primitive), cf., Figure 4(b),
is the quotient of the two-structure by factorization y; observe that clan names hint at
their class. Finally, Figure 4(c) organizes clans in a hierarchy; each quotient and each
nontrivial clan is enclosed in a dotted box with rounded corners, whereas containment
of boxes represents the parent-child relation of quotients and clans. Figure 4(d) shows
a tree representation of the decomposition.

3 Structuring Acyclic Concurrent Systems

Concurrent systems modeled as graphs can have almost any topology. However, it is
often preferable that they follow some structure. In this respect, a well-known property of
concurrent systems is that of (well-)structuredness [6], meaning that for every node with
multiple outgoing arcs (a split), there is a corresponding node with multiple incoming
arcs (a join), such that the set of nodes between the split and the join form a SESE
fragment. For example, Figure 5(a) shows an unstructured system, while Figure 5(b)
shows an equivalent structured system. Note that Figure 5(b) uses short-names for
tasks (a, b, ¢ ...), which appear next to each task in Figure 5(a). We assume a simple
modeling language, i.e., a concurrent system is composed of tasks, events, gateways,
and sequence flow edges. We allow exclusive and parallel gateways. Our modeling
language can be seen as a basic subset of BPMN.

Reject payment € Inform
request P3 customer

Figure 5: (a) Unstructured concurrent system and (b) its equivalent structured version

This section sketches the main idea of the solution to the problem of automatically
transforming acyclic concurrent systems, whereas the details can be found in [15]. The
motivations for such a transformation are manifold. Firstly, it has been empirically shown
that structured models are easier to comprehend and less error-prone than unstructured
ones [8]. Thus, a transformation from an unstructured to a structured system can
be used as a refactoring technique to increase model understandability. Secondly,
a number of existing analysis techniques only work for structured systems [2,7]. By
transforming unstructured models into structured ones, we can extend the applicability of
these techniques to a larger class of models. Thirdly, a transformation from unstructured
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3 STRUCTURING ACYCLIC CONCURRENT SYSTEMS

to structured models can be used to implement converters from graph-oriented process
modeling languages to structured process modeling languages, e.g., transforming from
BPMN models to BPEL executable code.

As mentioned above, the problem of structuring concurrent systems is relevant in
the context of designing BPMN-to-BPEL transformations. However, BPMN-to-BPEL
transformations, such as [14], treat rigids as black-boxes that are translated using
BPEL links or event handlers, rather than seeking to structure them. A large body
of work on flowcharts and GOTO program transformation [13] has addressed the
problem of structuring rigid fragments composed of exclusive gateways. In some cases,
these transformations introduce additional boolean variables in order to encode part
of the control flow, while in other cases they require certain nodes to be duplicated.
In [6], the authors show that not all acyclic rigids composed of parallel gateways can
be structured. They do so by providing one counter-example, but do not give a full
characterization of the class of models that can be structured nor do they define any
automated transformation. Instead, they explore some causes of unstructuredness. In a
similar vein, [9] presents a taxonomy of unstructuredness in process models, covering
cyclic and acyclic rigids. However, the taxonomy is incomplete, i.e., it does not cover
all possible cases of models that can be structured. Also, the authors do not define an
automated structuring algorithm.

The RPST of a well-structured system contains no rigid fragments. If one could
transform each rigid fragment into an equivalent structured fragment, the entire model
could be structured by traversing the RPST bottom-up and replacing each rigid by its
equivalent structured fragment. Observe that in Figure 5, the only rigid fragment R1 in
Figure 5(a) is replaced by an equivalent polygon fragment P2 in Figure 5(b).

Our goal is that the structured system preserves the level of observable concurrency
of the equivalent unstructured system, i.e., we require that both systems are fully
concurrent bisimilar [1]. The core idea of the structuring method proposed in [15] is to
compute the ordering relations, in particular the unfolding relations [4,11,12], of every
rigid fragment, and to synthesize a structured fragment from these ordering relations (if
such a structured fragment exists). To this end, the unfolding relations are computed on
the alternative representation of a system, viz. its complete prefix unfolding [11]. An
unfolding is a “compact” representation of all concurrent runs (instance subgraphs) of a
system. A complete prefix unfolding is a part of the unfolding that contains information
about all states that are reachable by the system.

: cl ez
1O T

Figure 6: Ordering relations of systems in Figure 5(a) and Figure 5(b) given (a) as a two-structure and
(b) as a directed graph. (c) Modular decomposition of (b) and (d) its tree representation.
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For the technical details on computing unfolding relations we refer the reader to [15]. A
two-structure in Figure 6(a) shows the unfolding relations computed for fragment R1 of
the system in Figure 5(a). The equivalence relation contains four equivalence classes
that represent causality, inverse causality, conflict, and concurrency relations. Figure 6(a)
must be read as follows: Solid edges represent the conflict relation ({(a,b), (b,a)}).
Dotted edges stand for the concurrency relation ({(c, d), (d, ¢)}). The causality relation is
encoded by dash dotted lines ({(a, ¢), (a,d), (b, ¢), (b,d)}). Finally, the inverse causality
relation is given by dashed lines ({(c, a), (d,a), (¢, 1), (d,b)}). Because of the nature of
unfolding relations, the corresponding two-structure can always be represented by an
equivalent directed graph, cf., Figure 6(b). We call such a graph the ordering relations
graph. In this graph, two-sided arrows hint at conflict, absence of an edge between a
pair of nodes signals for concurrency, and a directed edge stands for causality.

The important observation in the context of the structuring problem is that the system
in Figure 5(b) also exposes unfolding relations that can be represented by the ordering
relations graph in Figure 6(b) [15]. However, the well-structured system is not given,
rather it needs to be synthesized from the ordering relations graph. To this end, we
employ the technique for parsing ordering relations, cf., Sect. 2. Decomposition of a
directed graph into clans is known as modular decomposition and can be accomplished
in linear time [10]. Figure 6(c) shows the decomposition, whereas Figure 6(d) gives its
tree representation.

Finally, we conclude that there exists an equivalent well-structured system, if and
only if decomposition of the ordering relations graph of the unstructured system contains
no primitive clan, cf., [15]. A complete clan can be represented as a bond fragment as
all nodes of a complete clan are pairwise in the same ordering relation. If this relation is
the conflict relation, then one can construct a bond with exclusive gateways; in the case
of the concurrency relation, on the other hand, one can construct a bond with parallel
gateways. A linear clan can be represented by a polygon fragment in the resulting
well-structured fragment. Therefore, in order to construct a well-structured fragment,
one needs to traverse the hierarchy of clans bottom-up and synthesize a bond fragment
for each complete clan and a polygon fragment for each linear clan. For instance,
complete clan C1 in Figure 6(d) corresponds to bond B2 in Figure 5(b), C2 corresponds
to B3, and L1 corresponds to P2.

4 Conclusion

In this report, we have discussed two techniques for parsing two different representations
of concurrent systems. Parsing can be used to learn the hierarchical structure of a
concurrent system. First, we sketched the simplified algorithm for computing the Refined
Process Structure Tree—a technique for workflow graph parsing. Second, we discussed
a technique that can be used to parse concurrent systems specified as ordering relations
between pairs of tasks or pairs of occurrences of tasks. Finally, we showed how these
two techniques relate to each other in a solution to the problem of structuring acyclic
concurrent systems.
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