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Abstract. Identification of behavioural contradictions is an important
aspect of software engineering, in particular for checking the consistency
between a business process model used as system specification and a
corresponding workflow model used as implementation. In this paper, we
propose causal behavioural profiles as the basis for a consistency notion,
which capture essential behavioural information, such as concurrency,
exclusiveness, and causality between pairs of activities. Existing notions
of behavioural equivalence, such as bisimulation and trace equivalence,
might also be applied as consistency notions. Still, they are exponential
in computation. Our novel concept of causal behavioural profiles provides
a weaker behavioural consistency notion that can be computed efficiently
using structural decomposition techniques for sound free-choice workflow
systems if unstructured net fragments are acyclic or can be traced back
to S- or T-nets.

1 Introduction

Process modelling has recently become one of the most extensively used ap-
proaches for capturing business requirements [1]. These requirements are typically
refined and modified in an engineering process, resulting in a workflow model and
software artefacts. A workflow model often defines activities of the business pro-
cess model in more detail, neglects steps that are or do not need to be supported
by the system, or adjusts behaviour to the specifics of the workflow system. This
raises the question to which degree a process model used as specification and a
workflow model used as implementation are behaviourally consistent.

Fig. 1 illustrates this problem. Model (a) assumes a business perspective,
whereas (b) shows the workflow implementation of the process. Activities (or sets
thereof) that correspond to each other are connected by dash-dotted lines. For
this paper, we assume that such correspondences are given. They may stem from
a system analyst inspecting the models or from automatic matching. Recently,
techniques including structural analysis and natural language processing to
automatically identify such correspondences have been introduced for the domain
of business process models [2,3]. Moreover, techniques know from the area of
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Fig. 1. Example of two Petri net process models, (a) focussing on the business per-
spective, (b) depicting the workflow implementation

schema matching [4] might also be exploited as activities might be regarded as
elements of a process model schema.

In order to reason about the relation between two process models, existing
notions of behavioural equivalence might be used as a consistency measure.
For instance, bisimulation and trace equivalence assume the set of all traces
or the branching structure as essential behavioural characteristics that have
to be preserved. However, these notions are computationally hard [5], which is
particularly a problem for process models including many activities. Furthermore,
these notions only provide information whether behaviour is equivalent or not,
but do not describe how strong a deviation is in case of a mismatch.

In this paper, we argue that for the use case of comparing business process
models and workflow models, a criterion of behavioural equivalence might be
weakened in order to compensate for computational efficiency. We define the
notion of a causal behavioural profile, which includes dependencies in terms of
concurrency, exclusiveness, or causality between pairs of activities. It is computed
efficiently using structural decomposition techniques for sound free-choice work-
flow systems if unstructured net fragments are acyclic or can be traced back to
S- or T-nets. We also illustrate how these profiles form the basis of a consistency
notion that is weaker than existing notions of behavioural equivalence.

This paper is structured accordingly. Section 2 introduces our formal frame-
work. Causal behavioural profiles are defined in Section 3. Section 4 elaborates
on graph decomposition and introduces their application to workflow nets. Their
application for computing causal behavioural profiles along with experimental
results is presented in Section 5. Finally, Section 6 reviews related work, before
Section 7 concludes the paper.

2 Preliminaries

We use workflow (WF-) systems [6] as our formal grounding, a class of Petri nets
used for process modelling and analysis. Note that Petri net based formalisations
have been presented for (parts of) common process modelling languages, such as
BPEL, EPCs, and UML (e.g., [7,8,9]). Based on [6,10], we recall basic definitions.
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Definition 1 (WF-net Syntax).
◦ A net is a tuple N = (P, T, F ) with P and T as finite disjoint sets of places

and transitions, and F ⊆ (P × T ) ∪ (T × P ) as the flow relation. We write
X = (P ∪ T ) for all nodes. The transitive closure of F is denoted by F+.

◦ For a node x ∈ X, •x := {y ∈ X | (y, x) ∈ F}, x• := {y ∈ X | (x, y) ∈ F}.
◦ A tuple N ′ = (P ′, T ′, F ′) is a subnet for a net N = (P, T, F ), if P ′ ⊆ P ,

T ′ ⊆ T , and F ′ = F ∩ ((P ′ × T ′) ∪ (T ′ × P ′)). A subnet is partial, if
F ′ ⊆ F ∩ ((P ′ × T ′) ∪ (T ′ × P ′)).

◦ A net N is a T-net, if ∀ p ∈ P [ | • p| = 1 = |p • | ], and an S-net, if
∀ t ∈ T [ | • t| = 1 = |t • | ].

◦ A net N is free-choice, iff ∀ p ∈ P with |p • | > 1 holds •(p•) = {p}.
◦ A path is a non-empty sequence x1, . . . , xk of nodes, k > 1, denoted by

πN (x1, xk), which satisfies (x1, x2), . . . , (xk−1, xk) ∈ F . We write xi ∈ πN , if
xi is part of the path πN . A subpath π′

N of a path πN is a subsequence that
is itself a path. A path πN (x1, xk) is a circuit, if (xk, x1) ∈ F and no node
occurs more than once in the path.

◦ For a net N = (P, T, F ) and a partial subnet N ′ a path πN (x1, xk) (k > 1
and all xi are distinct) of N is a handle of N ′, iff πN ∩ (P ′ ∪ T ′) = {x1, xk}.

◦ For a net N = (P, T, F ) and two partial subnets N ′, N ′′ a path πN (x1, xk)
(k > 1 and all xi are distinct) of N is a bridge from N ′ to N ′′, iff πN ∩ (P ′ ∪
T ′) = {x1} and πN ∩ (P ′′ ∪ T ′′) = {xk}.

◦ A workflow (WF-) net is a net N = (P, T, F ), such that there is exactly
one place i ∈ P with •i = ∅, exactly one place o ∈ P with o• = ∅, and
∀ x ∈ X [ iF+x ∧ xF+o ].

Note that we speak of PP-,TT-,PT-,TP- handles and bridges, depending on the
type (place or transition, respectively) of the initial and the final node of the
respective path. Further on, we define semantics for WF-nets according to [6].

Definition 2 (WF-net Semantics). Let N = (P, T, F ) be a WF-net with
initial place i and final place o.
◦ M : P 7→ N is a marking of N , M denotes all markings of N . Mi = [i] is the

initial, Mo = [o] the final marking, while M(p) returns the number of tokens
in p, if p ∈ dom(M).

◦ For any transition t ∈ T and any marking M ∈ M, t is enabled in M , denoted
by (N, M)[t〉, iff ∀ p ∈ •t [ M(p) ≥ 1 ]. Marking M ′ is reached from M in N
by firing of t, denoted by (N, M)[t〉(N, M ′), such that M ′ = M − •t + t•.

◦ A firing sequence of length n ∈ N is a function σ : {0, . . . , n − 1} 7→ T . For
σ = {(0, tx), . . . , (n − 1, ty)}, we also write σ = t0, . . . , tn−1.

◦ For any two markings M,M ′ ∈ M, M ′ is reachable from M in N , denoted
by M ′ ∈ [N, Mi〉, if there exists a firing sequence σ leading from M to M ′.

Given a (free-choice, S-, T-) WF-net N with Mi as its initial marking, the tuple
S = (N, Mi) is a (free-choice, S-, T-) WF-system. Without stating it explicitly,
we assume a net of a system to be defined as N = (P, T, F ). We also recall the
soundness criterion, which requires WF-systems (1) to always terminate, and (2)
to have no dead transitions (proper termination is implied for WF-systems) [11].
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Definition 3 (Liveness, Boundness, Soundness).
◦ A WF-system (N, Mi) is live, if for every reachable marking M ∈ [N, Mi〉

and t ∈ T , there is a marking M ′ ∈ [N, M〉 such that (N, M ′)[t〉.
◦ A WF-system (N, Mi) is bounded, iff the set [N, Mi〉 is finite.
◦ A WF-system (N, Mi) with N = (P, T, F ) is sound, iff the short-circuit

system (N ′, Mi), N ′ = (P, T ∪ {tc}, F ∪ {(o, tc), (tc, i)}), is live and bounded.

3 The Notion of a Causal Behavioural Profile

This section introduces causal behavioural profiles. They are based on the notion
of behavioural profiles, which we recall in Section 3.1. We introduced these profiles
in an earlier work [12] to reason on execution ordering constraints only. Thus,
optionality of transition execution or causality between transitions is not captured.
These aspects are addressed by the novel concept of a causal behavioural profile
introduced in Section 3.2. Subsequently, Section 3.3 discusses our concepts with
respect to their relation to existing behavioural models defined for Petri nets.
Finally, we discuss the application of causal behavioural profiles for consistency
checking in Section 3.4.

3.1 Execution Order Constraints: The Behavioural Profile

Behavioural profiles aim at capturing behavioural aspects in terms of order
constraints of a process in a fine-grained manner [12]. They are grounded on the
set of possible firing sequences of a WF-system and the notion of weak order.

Definition 4 (Weak Order). Let (N, Mi) be a WF-system. A pair (x, y) is in
the weak order relation ≻ ⊆ T ×T , iff there exists a firing sequence σ = t1, . . . , tn
with (N, Mi)[σ〉, j ∈ {1, . . . , n−1}, j < k ≤ n, for which holds tj = x and tk = y.

Thus, two transitions t1, t2 are in weak order, if there exists a firing sequence
reachable from the initial marking in which t1 occurs before t2. Depending on
how two activities of a process model are related by weak order, we define three
relations forming the behavioural profile.

Definition 5 (Behavioural Profile). Let (N, Mi) be a WF-system. A pair
(x, y) ∈ (T × T ) is in at most one of the following relations:
◦ The strict order relation  , if x ≻ y and y 6≻ x.
◦ The exclusiveness relation +, if x 6≻ y and y 6≻ x.
◦ The observation concurrency relation ||, if x ≻ y and y ≻ x.

Given a set T ′ ⊆ T , the set of all relations BPT ′ = { , +, ||} defined over T ′×T ′

is the behavioural profile of (N, Mi) for T ′.

Computing the behavioural profile for all transitions of the system (a) in Fig. 1,
for instance, it holds C  E as there exists no firing sequence, such that E
occurs before C. However, strict order does not imply the actual occurrence.
That is, there are firing sequences containing only one of the two transitions, or



Efficient Computation of Causal Behavioural Profiles 5

even none of them. D + E as both transitions will never occur in a single firing
sequence and B||G as both transitions can occur in any order. Note that the
three relations are mutually exclusive and (together with reversed strict order)
partition the Cartesian product of transitions over which they are defined [12].
With respect to itself, a transition is either in the exclusive relation (if it can
occur at most once, e.g., D + D) or in the observation concurrency relation (if it
can occur more than once, e.g., B||B).

3.2 Occurrence Constraints: The Causal Behavioural Profile

A

B C

D

(a)

A

B C

D

(b)

Fig. 2. Optionality

Behavioural profiles as introduced above relate
pairs of transitions according to their order of
potential occurrence. While an analysis of order
constraints might be sufficient for certain use
cases, a more extensive analysis is needed for
validating a workflow implementation against a
process model specification. Thus, aspects that go
beyond order of occurrences, such as optionality
and causality, have to be taken into account.

Optionality of a transition is given, if there is a firing sequence leading from
the initial to the final marking of the system that does not contain the transition.
Optionality might also be lifted from single transitions to sets of transitions.
A set of transitions is considered to be jointly optional, if any firing sequence
from the initial to the final marking contains all or none of the transitions. As
illustrated by Fig. 2(a) and Fig. 2(b) this property cannot be derived from the
knowledge about optionality of single transitions. In both systems, B and C are
optional, but only in Fig. 2(b) the set {B, C} is optional.

A DCB
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Fig. 3. No causality for transi-
tions (B,C) in a cycle

Closely related to optionality is causality,
which requires that one transition can only oc-
cur after the occurrence of another transition.
Thus, causality comprises two aspects, a certain
order of occurrences and a causal coupling of oc-
currences. While the former is addressed by the
behavioural profile in terms of the strict order
relation, the latter is not captured. For instance,
B is a cause of C in Fig. 2(b), but not in Fig. 2(a).
Note that two observation concurrent transitions
cannot show causality according to our definition.
For both systems in Fig. 3, it holds B||C, as
there is no distinct order relation between all occurrences of the two transitions.
Thus, observation concurrency might be interpreted as the absence of any strict
dependency regarding order of occurrence. Therefore, it is reasonable to define
causality also as a dependency between all occurrences of two transitions, instead
of considering causal dependencies between single occurrences of transitions
(as, e.g., the response/leads-to dependency in [13]). Thus, there is no causality
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between B and C in either system in Fig. 3, as both transitions are not ordered
regarding their potential occurrence.

In order to cope with the aforementioned aspects, we introduce the co-
occurrence relation and the causal behavioural profile. Two transitions are co-
occurring, if any firing sequence from the initial to the final marking that contains
the first transition contains also the second transition.

Definition 6 (Causal Behavioural Profile). Let (N, Mi) be a WF-system.
◦ A pair (x, y) ∈ (T × T ) is in the co-occurrence relation ≫, if for all firing

sequences σ with (N, Mi)[σ〉(N, Mo), it holds x ∈ σ ⇒ y ∈ σ.
◦ Given a set T ′ ⊆ T , the set of all relations CBPT ′ = { ,+, ||,≫} defined

over T ′ × T ′ is the causal behavioural profile of (N, Mi) for T ′.

Trivially, it holds t ≫ t for all t ∈ T . We derive optionality and causality as
follows. A single transition t ∈ T is optional, if ti 6≫ t for some ti ∈ i• with i as the
initial place. A set T1 ⊆ T of transitions is optional, if all transitions themselves
are optional and they are pairwise co-occurring to each other ((T1 × T1) ⊆ ≫).

Further on, a transition t1 ∈ T is a cause of t2 ∈ T , if they are in strict order
(t1  t2) and occurrence of the second implies occurrence of the first (t2 ≫ t1).
Note that, in contrast to the behavioural profile, the causal behavioural profile
differs for both systems in Fig. 2.

3.3 Relation to Existing Behavioural Models

There is a large body of research on behavioural relations for formal models
specifying dynamic systems in general, and for Petri nets in particular. Focussing
on constraints regarding the order of occurrence, the relations proposed in [14] for
workflow mining are close to our relations, yet different. We base our definitions
on the notion of an indirect weak order dependency, whereas the relations in [14]
are grounded on a direct sequential order. As a result, for instance, the notion
of exclusiveness is restricted to ‘pairs of transitions that never follow each other
directly’ [14], whereas we capture exclusiveness for transitions that might occur
at different stages of a firing sequence.

Obviously, the well-known notions of conflicting and concurrent transitions
are related to our observed relations as well. For our case of sound free-choice
WF-systems, two transitions in conflict will be exclusive or observation concurrent
in the behavioural profile, depending on whether or not they are part of a common
control flow cycle, cf., [12]. Similarly, all transitions that are enabled concurrently
in some reachable marking (cf., the concurrency relation computed in [15]) are
observation concurrent in the behavioural profile.

In order to cope with concurrency and the interleaving problem, the unfolding
of a Petri net (or the prefix of the unfolding, respectively) might be exploited for
behaviour analysis [16,17]. That is, a true concurrent model is created in which
a transition (i.e., an event) corresponds to a certain occurrence of a transition in
the original net. Based thereon, events can be related as being in a weak causal
predecessor, conflict, or concurrency relation. While these relations resemble
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the relations of our casual behavioural profile, they are defined for events, i.e.,
transition occurrences, instead of transitions. Thus, we might derive our relations
by lifting these relations to the level of transitions again. For instance, if all events
representing two transitions are in conflict in the (potentially infinite) unfolding,
both transitions are exclusive according to the behavioural profile. However,
an algorithm describing the derivation of causal behavioural profiles from the
prefix of an unfolding is beyond the scope of this paper. Usage of unfoldings is
also inappropriate w.r.t. the class of systems we address in this paper, as the
construction of unfoldings is computationally much harder than the approach
introduced in the remainder of this paper.

With respect to common notions of behavioural equivalence, we see that two
WF-systems with equal causal profiles are not necessarily trace equivalent. For
instance, both systems in Fig. 3 have the same causal profile, whereas they are
not trace equivalent. Evidently, the same holds true for bisimulation equivalences,
as the profile neglects the branching structure of a system. However, it is easy to
see that trace equivalence of two WF-systems implies equivalence of their causal
behavioural profiles for all transitions, as all behavioural relations formulate
statements about the existence of firing sequences.

3.4 Application of Causal Behavioural Profiles

We motivated the definition of causal behavioural profiles with the need for a
notion of behavioural consistency that enables analysis of related process models
in an efficient manner. Under the assumption of an alignment relation between
transitions of two WF-systems, we define a consistency metric as follows.

Definition 7 (Consistency Metric). Let (N1, Mi1) and (N2, Mi2) be two
WF-systems and ∼ ⊆ T1 × T2 a correspondence relation with ∼ 6= ∅.
◦ The set T∼

1 = {t1 ∈ T1 | ∃ t2 ∈ T2 [ t1 ∼ t2 ]} contains all aligned transitions
of (N1, Mi1). T∼

2 is defined analogously.
◦ With R1 and R2 as the relations of the causal behavioural profile for the

WF-systems, the set CT∼
1 ⊆ (T∼

1 × T∼
1 ) contains all consistent transition

pairs (tx, ty), such that
− if tx = ty, then ∀ ts ∈ T∼

2 with tx ∼ ts it holds txR1tx ⇒ tsR2ts,
− if tx 6= ty, then ∀ ts, tt ∈ T∼

2 with ts 6= tt, tx ∼ ts, and ty ∼ tt it holds
either txR1ty ⇒ tsR2tt or tx ∼ tt and ty ∼ ts.

The set CT∼
2 is defined analogously.

◦ The degree of consistency of ∼ is defined as D∼ =
|CT∼

1
|+|CT∼

2
|

|(T∼

1
×T∼

1
)|+|(T∼

2
×T∼

2
)| .

The general idea behind this metric can be summarised as follows. For each pair
of transitions, for which there are corresponding transitions in the other model,
we check whether they share the same constraints. Since there can be complex
1:n correspondences as in Fig. 1, we have to count these correspondences from
the perspective of each model. Applying this metric to the scenario in Fig. 1, we
see that the order of potential occurrence is preserved for all aligned transitions.
However, transition (A) is mandatory in model (a), whereas its counterparts
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are optional in model (b). Consequently, causality between transition (A) and,
for instance, transition (K) is not preserved in model (b) either, which is taken
into account in the causal behavioural profile. For our example, the degree of
consistency is D∼ = 28+27

36+36 ≈ 0.76, as both models (a) and (b) contain six
transitions with correspondences yielding 36 transition pairs in the profile, while
the profile relations are preserved for 28 (or 27, respectively) pairs.

For our proposal of assessing the consistency between business process models
and their implementation as a workflow model, we got positive feedback from
process analysts. Currently, we are also evaluating the results of an empirical study
that relates our consistency metric to the consistency perception of process experts
in a broader setting. Here, preliminary findings confirm a good approximation
of perceived consistency by our metric. Clearly, there is a need for a multitude
of consistency metrics in order to be able to graduate consistency requirements
for a concrete setting. Nevertheless, the metric nature and efficient computation
methods have to be seen as core requirements on such notions.

It is also worth to mention that we already showed how behavioural profiles can
be applied to support change propagation between related process models [18].

4 Graph Decomposition Techniques for WF-Systems

First, Section 4.1 introduces the Refined Process Structure Tree (RPST), a
structural decomposition technique for workflow graphs. Second, Section 4.2
enriches the RPST for WF-systems with behavioural annotations.

4.1 The Refined Process Structure Tree

The RPST [19,20] is a technique for detecting the structure of a workflow graph.
A workflow graph can be parsed into a hierarchy of fragments with a single entry
and a single exit, such that the RPST is a containment hierarchy of canonical
fragments of the graph. The RPST is unique for a given workflow graph and can
be computed in linear time [19,20]. Although the RPST has been introduced for
workflow graphs, the technique can be applied to other graph based behavioural
models such as WF-systems in a straight-forward manner. Basic terms of the
RPST are defined for WF-nets as follows.

Definition 8 (Connected, Edges, Entry, Exit, Canonical Fragment).
Let N = (P, T, F ) be a WF-net with initial place i and final place o.
◦ A net N = (P, T, F ) is connected, if ∀ x ∈ X [ iF+x ∧ xF+o ].
◦ For a node x ∈ X of a net N = (P, T, F ), inN (x) = {(n, x) | n ∈ •x} are its

incoming edges and outN (x) = {(x, n) | n ∈ x•} are its outgoing edges.
◦ A node x ∈ X ′ of a connected subnet N ′ = (P ′, T ′, F ′) of a net N is a

boundary node, if ∃ e ∈ inN (x) ∪ outN (x) [ e /∈ F ′ ]. If x is a boundary node,
it is an entry of N ′, if inN (x) ∩ F ′ = ∅ or outN (x) ⊆ F ′, or an exit of N ′, if
outN (x) ∩ F ′ = ∅ or inN (x) ⊆ F ′.

◦ Any connected subnet ω of N , is a fragment, if it has exactly two boundary
nodes, one entry and one exit denoted by ω⊳ and ω⊲, respectively.
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Fig. 4. (a) A WF-system and its canonical fragments, (b) the RPST of (a)

◦ A fragment is place bordered if its boundary nodes are places.
◦ A fragment is transition bordered if its boundary nodes are transitions.
◦ A fragment ω = (Pω, Tω, Fω) is canonical in a set of fragments Ω of N , iff

∀ γ = (Pγ , Tγ , Fγ) ∈ Ω [ ω 6= γ ⇒ (Fω ∩ Fγ = ∅) ∨ (Fω ⊂ Fγ) ∨ (Fγ ⊂ Fω) ].

Fig. 4 exemplifies the RPST for the WF-system from Fig. 1(a). Fig. 4(a) illustrates
its canonical fragments, each of them formed by a set of edges, together with
incident nodes, enclosed in or intersecting the region with a dotted border.
Fig. 4(b) provides an alternative view, where each node represents a canonical
fragment and edges hint at containment relation of fragments. Observe that
one obtains a tree structure—the RPST. For instance, fragment B1 has two
boundary transitions: entry A and exit K, is contained in fragment P1, and
contains fragments P2 and P3.

Fig. 5. Node-splitting

If the RPST is computed for a normalized workflow
graph, i.e., a workflow graph that does not contain
nodes with multiple incoming and multiple outgoing
edges, each canonical fragment can be classified to one
out of four structural classes [20,21]: A trivial (T ) fragment consists of a single
edge. A polygon (P ) represents a sequence of nodes (fragments) of an arbitrary
length. A bond (B) stands for a collection of fragments that share common
boundary nodes. Any other fragment is a rigid (R). Note that we use fragment
names that hint at their structural class, e.g., R1 is a rigid fragment. Note that
every workflow graph can be normalized by performing a node-splitting pre-
processing step. The pre-processing rules for WF-nets are given in Fig. 5. Here,
the second rule normalizing a transition, avoids duplication of the respective
transition. The example WF-system in Fig. 4(a) is already normalized.

4.2 An Annotated RPST: The WF-Tree

The structural patterns derived by the RPST can be related to behavioural
properties of the underlying WF-system. In this section, we concretise RPST
fragments by annotating them with behavioural characteristics. We refer to the
containment hierarchy of annotated canonical fragments of a WF-system as
the RPST with behavioural annotations, or WF-tree for short. The WF-tree is
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defined for sound free-choice WF-systems. It is well-known that the free-choice
and soundness properties are required to derive behavioural statements from the
structure of a system, as both together imply a tight coupling of syntax and
semantics (cf., [22,23]).

Definition 9 (WF-Tree). Let (N, Mi) be a sound free-choice WF-system.
The RPST with behavioural annotations, the WF-Tree of N , is a tuple
TN = (Ω, χ, t, b), where:
◦ Ω is a set of all canonical fragments of N ,
◦ χ : Ω → P(Ω) is a function that assigns to fragment its child fragments,
◦ t : Ω → {T, P,B,R} is a function that assigns a type to a fragment,
◦ b : ΩB → {B◦, B⋄, L} is a partial function that assigns a refined type to

a bond fragment, where B◦, B⋄, and L types stand for place bordered,
transition bordered, and loop bonds, respectively.

Further on, we define auxiliary concepts for the WF-tree.

Definition 10 (Parent, Child, Root, Ancestor, Descendant, LCA,
Path). Let TN = (Ω, χ, t, b) be the WF-tree.
◦ For any fragment ω ∈ Ω, ω is a parent of γ and γ is a child of ω, if γ ∈ χ(ω).

By χ+ we denote the transitive closure of χ.
◦ The fragment ω ∈ Ω is a root of T , denoted by ωr, if it has no parent.
◦ The partial function ρ : Ω \ {ωr} → Ω assigns parents to fragments.
◦ For any fragment ω ∈ Ω, ω is an ancestor of ϑ and ϑ is a descendant of ω, if

ϑ ∈ χ+(ω).
◦ For any two fragments {ω, γ} ∈ Ω their lowest common ancestor (LCA),

denoted by lca(ω, γ), is the shared ancestor of ω and γ that is located farthest
from the root of the WF-tree. By definition, lca(ω, ω) = ω.

◦ For any fragment ω0 ∈ Ω and its descendant ωn ∈ Ω, a downward path from
ω0 to ωn, denoted by πT (ω0, ωn), is a sequence (ω0, ω1, . . . , ωn), such that
ωi is a parent of ωi+1 for all i ∈ N0. In addition, πT (ω0, ωn, i) = ωi and
πT {ω0, ωn} is a set which contains all fragments of πT (ω0, ωn).

P1

B  1

P4 P5 P6 P7

L1 B|1

P2

P8

P9
P10

P11

R1

P3

P12

Fig. 6. The WF-tree

Fig. 6 shows the WF-tree of the WF-system from
Fig. 4(a). Note that trivial fragments are not vi-
sualised. The WF-tree is isomorphic to the RPST
of the WF-system, cf., Fig. 4(b). Given the RPST,
adding the behavioural annotation is a trivial
task for most fragments, except of the following
cases: A bond fragment γ = (Pγ , Tγ , Fγ) ∈ dom(b)
of TN = (Ω, χ, t, b) is assigned the L type, if
γ⊳ = ω⊲ with ω being a child of γ. Otherwise,
b(γ) = B◦ if γ⊳ ∈ Pγ , or b(γ) = B⋄ if γ⊳ ∈ Tγ .
Children of a polygon fragment are arranged with respect to their execution order.
A partial function order : Ω′ → N0, Ω′ = {ω ∈ Ω \ {ωr} | t(ρ(ω)) = P} assigns
to children of polygon fragments their respective order positions; order(ω) = 0,
if ω⊳ = γ⊳ with γ = ρ(ω) being the parent, and order(ω) = i, i ∈ N, if ω⊳ = ϑ⊲
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for some ϑ ∈ Ω, such that order(ϑ) = i − 1. Observe that the orders of two
nodes are only comparable if they share a common parent. For instance, in Fig. 6,
order(L1) = 1 and order(B◦1) = 2. This means that fragment L1 is always
executed before fragment B◦1 inside of polygon P2. The layout of child fragments
of polygon fragments hints at their order relations.

Children of a loop fragment are classified as forward (⇒) or backward (⇐).
A partial function ℓ : Ω′′ → {⇐,⇒} with Ω′′ = {ω ∈ Ω \ {ωr} | b(ρ(ω)) = L}
assigns an orientation to children of loop fragments. ℓ(ω) =⇒ if ω⊳ = γ⊳ with
γ = ρ(ω), otherwise ℓ(ω) =⇐. In Fig. 6, P4 and P5 are forward and backward
fragments, respectively, which is visually illustrated by the direction of edges in
the WF-tree.

In the following, we introduce two lemmas that prove the completeness of the
codomain of function b of the WF-tree. We show that a bond fragment is either
place or transition bordered, and that each loop fragment is place bordered. Note
that a rigid fragment that is bordered with a place and a transition can still be
free-choice and sound (see [24] for an example).

Lemma 1. Let TN = (Ω, χ, t, b) be the WF-tree of a sound free-choice WF-
system (N, Mi), N = (P, T, F ). No bond fragment ω ∈ Ω, t(ω) = B, has {p, t}
boundary nodes, where p ∈ P and t ∈ T .

Proof. Assume ω is a bond fragment with {p, t} boundary nodes. There exists a
circuit Γ in N that contains {p, t}. Let Γω be a subpath of Γ inside ω. There
exists a child fragment γ of ω that contains Γω. A bond fragment has k ≥ 2 child
fragments, cf., [20,21]. Let ϑ be a child of ω, ϑ 6= γ. We distinguish two cases:
◦ Let H be a path from p to t contained in ϑ. H is a PT-handle of Γ . In a live

and bounded free-choice system, H is bridged to Γω through a TP-bridge K,
cf., Proposition 4.2 in [25]. This implies that ϑ = γ; otherwise bond fragment
ω contains path K that is not inside of a single child fragment, cf., [21,20].

◦ Let H be a path from t to p contained in ϑ. H is a TP-handle of Γ . In a live
and bounded free-choice system, no circuit has TP-handles, cf., Proposition 4.1
in [25]. Thus, (N, Mi) is not a sound free-choice WF-system.

Therefore, ω either has a single child fragment, in which case ω is not a bond
fragment, or (N, Mi) is not a sound free-choice WF-system. ⊓⊔

Lemma 2. Let TN = (Ω, χ, t, b) be the WF-tree of a sound free-choice WF-
system, (N, Mi), N = (P, T, F ). A loop fragment ω = (Pω, Tω, Fω) ∈ Ω, b(ω) = L,
is place bordered, i.e., {ω⊳, ω⊲} ∈ P .

Proof. Because of Lemma 1, ω is either place or transition bordered. Assume ω
is transition bordered. There exists place p such that p ∈ •ω⊳ ∩ Pω, Mi(p) = 0.
Transition ω⊳ is enabled if there exists a marking M ∈ [(N, Mi)〉 with M(p) > 0.
Since ω is a connected subnet, for all t ∈ Tω \ {ω⊳, ω⊲} all edges are in ω, i.e.,
(inN (t) ∪ outN (t)) ⊆ Fω. Thus, every path from i to p visits ω⊳. Thus, M(p) > 0
if ω⊳ has fired, was enabled, before. We reached a contradiction. Transition ω⊳ is
never enabled and N is not live, and hence, not sound. Since any loop fragment
is not transition bordered, it is place bordered (Lemma 1). ⊓⊔
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For sound free-choice WF-systems, the WF-tree can be derived efficiently.

Corollary 1. The following problem can be solved in linear time.
Given a sound free-choice WF-system, to compute its WF-tree.

Proof. Given a workflow graph, its RPST can be computed in time linear to the
number of edges of the graph [19,20]. The number of canonical fragments in the
RPST is linear to the number of edges in the workflow graph [20,26,27]. Given
the RPST of a WF-system, we iterate over all bond fragments and assign the
behavioural annotations. Here, it suffices to check the type of the entry node,
either a place or transition, and to determine whether the entry is also the exit
of the parent fragment. That can be decided in constant time for each fragment.
Finally, child fragments of a polygon can be ordered in linear time. We introduce
a hash function that returns a child fragment with the given node as an entry
and iterate over the children of the polygon. ⊓⊔

5 Efficient Computation of Causal Behavioural Profiles

This section shows how a WF-tree is applied to compute the causal behavioural
profile. Section 5.1 introduces the approach for transition pairs that do not require
analysis of rigid fragments. Afterwards, we discuss analysis of rigid fragments in
Section 5.2 and present experimental performance results in Section 5.3.

5.1 Computation without Analysis of Rigid Fragments

For the computation of the causal behavioural profile for a pair of transitions, we
assume that each transition has one incoming and one outgoing flow arc. If this
is not the case, we apply the pre-processing illustrated in Fig. 5, which preserves
the behaviour of the system (cf., [28]) and, therefore, does not change the causal
behavioural profile. Given a pre-processed WF-system (N, Mi) with N = (P, T, F )
and its WF-tree TN = (Ω, χ, t, b), each transition t ∈ T is a boundary node of at
most two trivial fragments of TN . Thus, it suffices to show how the behavioural
relations are determined for the entries of two trivial fragments.

Fig. 7. Pre-processing

Note that our computation is based on two ele-
mentary well-known properties of free-choice sound
WF-systems. If (N, Mi) is free-choice and sound, it is
also safe (cf., Lemma 1 in [23]), i.e., ∀ p ∈ P , M(p) < 2
in all reachable markings. Thus, a single transition can-
not be enabled concurrently with itself. In addition, if (N, Mi) is free-choice, the
existence of a path πN (x, y) between two places x and y implies the existence of
a firing sequence containing all transitions on πN (x, y) (cf., Lemma 4.2 in [22]).
Actually, the marking My that puts a token in y is required to be a home marking
(a marking which is reachable from every marking reachable from the initial
state). Soundness of a system (N, Mi) implies liveness of its short-circuit system
(N ′, Mi). Thus, all markings M ∈ [N, Mi〉 are home markings in (N ′, Mi) and
the property holds for all markings M ∈ [N, Mi〉 in a sound free-choice system.
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In the absence of rigid fragments on certain paths, we derive the behavioural
profile as follows.

Proposition 1. Let TN = (Ω, χ, t, b) be the WF-tree and α, β ∈ Ω two trivial
fragments. Let γ = lca(α, β) and ∀ ω ∈ πT {ωr, γ} [ t(ω) 6= R ].
1. If α = β, then α⊳||β⊳, iff ∃ ω ∈ πT {ωr, γ} [ b(ω) = L ]. Otherwise, α⊳ + β⊳.
2. If α 6= β,

◦ α⊳  β⊳, iff (1) t(γ) = P ∧ order(πT (γ, α, 1)) < order(πT (γ, β, 1)), and
(2) ∀ ω ∈ πT {ωr, γ} [ b(ω) 6= L ].

◦ α⊳ + β⊳, iff (1) b(γ) = B◦, and (2) ∀ ω ∈ πT {ωr, γ} [ b(ω) 6= L ].
◦ α⊳||β⊳, iff (1) b(γ) ∈ {B⋄, L}, or (2) ∃ ω ∈ πT {ωr, γ} [ b(ω) = L ].

Proof. Let TN , α, β, γ be defined as above, (N, Mi) the respective WF-system,
and ∀ ω ∈ πT {ωr, γ} [ t(ω) 6= R ].
1. Let α = β.

⇒ Let α⊳||β⊳ and assume ∀ ω ∈ πT {ωr, γ} [ b(ω) 6= L ]. Due to α = β,
also α⊳ = β⊳. Thus, we have α⊳||α⊳. Due to safeness of (N, Mi), α⊳||α⊳

cannot be traced back to concurrent enabling of α⊳. According to Lemma
2 in [12], that implies α⊳ F+ α⊳. Control flow cycles are part of B (if
the bond is a loop fragment) or R type fragments. Thus, there has to be
a fragment ω, which is an ancestor of α and t(ω) = R or b(ω) = L. As
the LCA of α is γ = α by definition, this yields a contradiction with the
assumptions.

⇐ Let ∃ ω ∈ πT {ωr, γ} [ b(ω) = L ] and assume α⊳✁✁||β⊳. Since α = β, we
have α⊳ = β⊳. One of the ancestors of α is an B type fragment that is
a loop. Thus, α⊳ F+ α⊳. Since (N, Mi) is safe, α⊳ cannot be enabled
concurrently with itself. Therefore, α⊳||α⊳ due to Lemma 2 in [12].

2. Let α 6= β.
⇒ Let α⊳  β⊳ and assume (1) order(πT (γ, α, 1)) > order(πT (γ, β, 1)) or

t(γ) 6= P , or (2) ∃ ω ∈ πT {ωr, γ} [ b(ω) = L ]. According to Theorem
1 in [12], α⊳  β⊳ implies α⊳ F+ β⊳ and β⊳ ✟✟F+ α⊳. Thus, assumption
(2) cannot hold as an L type fragment that is an ancestor of both, α
and β, would imply β⊳ F+ α⊳. The first part of assumption (1) can-
not hold either: b(γ) = L contradicts with the flow dependencies be-
tween α⊳ and β⊳, while t(γ) = R, t(γ) = B and b(γ) ∈ {B◦, B⋄}, and
t(γ) = T (which would imply α = β) disqualify due to our assumptions.
Thus, t(γ) = P . Obviously, the order in a P type fragment coincidences
with the flow dependencies, i.e., α⊳ F+ β⊳ yields a contradiction with
order(πT (γ, α, 1)) > order(πT (γ, β, 1)).
Let α⊳ +β⊳ and assume (1) b(γ) 6= B◦ or (2) ∃ ω ∈ πT {ωr, γ} [ b(ω) = L ].
According to Lemma 3 in [12], the former implies α⊳ ✟✟F+ β⊳ and β⊳ ✟✟F+ α⊳.
That, in turn, implies that assumption (2) cannot hold and γ 6= P . Also
γ 6= R and γ 6= T (which would imply α = β) by our assumptions.
Thus, t(γ) = B. As the flow dependencies preclude b(γ) = L, we assume
b(γ) = B⋄. Then, γ⊳ is a transition. Due to soundness, there are two
markings M1, M2 ∈ [N, Mi〉, such that (N, M1)[γ⊳〉(N, M2). As γ is an
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ancestor of both, α and β, we know γ⊳ F+ α⊳ and γ⊳ F+ α⊳. That implies
that both transitions, α⊳ and β⊳, might get enabled in a firing sequences
starting in M2. That is not in line with α⊳ + β⊳. Thus, b(γ) = B◦, a
contradiction with assumption (1).
Let α⊳||β⊳ and assume (1) b(γ) = B◦ and (2) ∀ ω ∈ πT {ωr, γ} [ b(ω) 6= L ].
According to Lemma 2 in [12] α⊳||β⊳ implies concurrent enabling of a
both transitions in a certain marking, or α⊳ F+ β⊳ and β⊳ F+ α⊳. The
latter is not possible due to assumption (2). Thus, we assume concurrent
enabling. Let x ∈ γ⊳• be a successor of γ⊳. γ is the LCA of α and β.
Consequently, x F+ α⊳ implies x✟✟F+ β⊳ and vice versa. Thus, concurrenty
enabling of α⊳ and β⊳ requires γ⊳ to be a transition. That, in turn, is a
contradiction with assumption (1).

⇐ Let (1) t(γ) = P ∧order(πT (γ, α, 1)) < order(πT (γ, β, 1)), and (2) ∀ ω ∈
πT {ωr, γ} [ b(ω) 6= L ] and assume α⊳ 6 β⊳. From (1) and (2), we
get α⊳ F+ β⊳ and β⊳ ✟✟F+ α⊳. According to Theorem 1 in [12], this is
equivalent to α⊳  β⊳.
Let (1) b(γ) = B◦ and (2) ∀ ω ∈ πT {ωr, γ} [ b(ω) 6= L ], and assume
α⊳�+β⊳. From (1) and (2), we get α⊳ ✟✟F+ β⊳ and β⊳ ✟✟F+ α⊳. Therefore, we
assume that both transitions are enabled concurrently. Due to b(γ) = B◦,
γ⊳ is a place. Let t ∈ γ⊳• be a successor of γ⊳. Due to soundness, there
are two markings M1, M2 ∈ [N, Mi〉, such that (N, M1)[t〉(N, M2). As
γ is the LCA of both, we know that t F+ α⊳ implies t ✟✟F+ β⊳ and vice
versa. Thus, any firing sequence starting in M2 contains either α⊳, β⊳, or
none of the two transitions. As γ is the parent of both, α and β, γ⊳ is on
every path from the initial place i to α⊳ and β⊳. Therefore, there does
not exist a firing sequences containing both transitions, which leads to
α⊳ + β⊳.
Let (1) b(γ) ∈ {B⋄, L} or (2) ∃ ω ∈ πT {ωr, γ} [ b(ω) = L ], and assume
α⊳✁✁||β⊳. From requirement (2), we get α⊳ F+ β⊳ and β⊳ F+ α⊳. According
to Lemma 2 in [12] this is equivalent to α⊳||β⊳, which is not in line with
our assumption. The same holds true for b(γ) = L. Consider b(γ) = B⋄.
Then, γ⊳ is a transition. Let p1, p2 ∈ γ⊳• be two successors of γ⊳ with
p1 F+ α⊳ and p2 F+ β⊳. The existence of these paths implies the existence
of a firing sequence, i.e., α⊳ and β⊳ can get enabled concurrently. That, in
turn, is equivalent to α⊳||β⊳ by Lemma 1 in [12] yielding a contradiction
with our assumption. ⊓⊔

For the derivation of the co-occurrence relation, we need an auxiliary lemma
for the relation between (forwards and backwards) conflict-free paths and the
co-occurrence relation. As usual, given a WF-net N = (P, T, F ) a path πN (x1, xk)
is forwards conflict-free, iff xi ∈ P implies |xi • | = 1 for 1 ≤ i < k. The path
πN (x1, xk) is backwards conflict-free, iff xi ∈ P implies | • xi| = 1 for 1 < i ≤ k.

Lemma 3. For any two transitions x and y in a sound free-choice WF-system
holds,

◦ if there is a forwards conflict-free path from x to y, then x ≫ y.
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◦ if there is a backwards conflict-free path from x to y, then y ≫ x.

Proof. Let (N, Mi) be a sound free-choice WF-system and x, y ∈ T two transi-
tions.
◦ If y ∈ (x•)• then every firing sequence σ containing x and ending with o, the

final place, contains y as well, as for all places p ∈ x• holds |p • | = 1 and,
therefore, p• = {y}, which implies x ≫ y. If y 6∈ (x•)•, then let t ∈ T be a
transition between x and y, i.e., x F+ t and t F+ y. For all places p ∈ •t
holds |p • | = 1. Thus, p• = {t}. Consequently, for any two markings M1, M2

with (N, M1)[σ〉(N, M2), (N, M1)[t〉, and not (N, M2)[t〉 we know that t ∈ σ.
Starting with the transitions in (x•)•, therefore, all transitions on πN (x, y)
have to be fired once they have been enabled in order to empty the place(s)
of their pre set. Due to soundness of the system, there is a firing sequence
to the final marking for all reachable markings that enable x. Consequently,
firing of x implies firing of y, which yields x ≫ y.

◦ The argument for the case of forwards paths can be turned around. That
is, if y ∈ (x•)• then every firing sequence σ containing y and ending with o,
the final place, contains x as well, as for all places p ∈ x• holds | • p| = 1
and, therefore, •p = {x}, which implies y ≫ x. If y 6∈ (x•)•, again, there is a
transition t ∈ T with x F+ t and t F+ y. For all places p ∈ t• holds | • p| = 1.
Thus, •p = {t}. Let M1 ∈ [N, Mi〉 be a marking with M1(p) > 1. Due to
•p = {t} and soundness of the system, there has to be a marking M2 from
which we reach M1 via firing of t, i.e., (N, M2)[t〉(N, M1). Starting with the
transitions in •(•y), therefore, all transitions on πN (x, y) have to be fired in
order to mark the place(s) of their post set and eventually enable transition
y. Again, soundness of the system guarantees that for all reachable markings,
there is a firing sequence to the final marking, such that firing of y implies
firing of x, which yields y ≫ x. ⊓⊔

The co-occurrence relation is derived as follows.

Proposition 2. Let TN = (Ω, χ, t, b) be the WF-tree and α, β ∈ Ω two trivial
fragments, α 6= β. Let γ = lca(α, β), Π = πT {γ, β}, and ∀ ω ∈ Π [ t(ω) 6= R ].
Then, α⊳ ≫ β⊳, iff for all ω ∈ (Π \ {β}) one of the following conditions holds:
1. t(ω) = P ,
2. t(ω) = B and b(ω) = B⋄, or
3. t(ω) = B, b(ω) = L, and with Θ = {ϑ ∈ χ(ω) | ℓ(ϑ) =⇒} it holds ∀ ϑ ∈

Θ [ β ∈ χ+(ϑ) ].

Proof. Let TN , α, β, γ, Π be defined as above, (N, Mi) the respective WF-
system, and ∀ ω ∈ Π [ t(ω) 6= R ]. For both directions of the proof, let δ = ρ(β)
and η = ρ(δ) be the parents of β and δ. Note that we know t(δ) = P and
t(η) /∈ {R, T}.
⇒ Let α⊳ ≫ β⊳ and assume that there is an ω ∈ (Π \ {β}) with t(ω) 6= P

or b(ω) 6= B⋄ or if b(ω) = L then it holds ∃ ϑ ∈ Θ [ β /∈ χ+(ϑ) ] with
Θ = {ϑ ∈ χ(ω) | ℓ(ϑ) =⇒}. For all ω ∈ (Π \ {β}), we know t(ω) 6= R and
t(ω) 6= T (as β ∈ χ+(ω)). We first consider the LCA, i.e., fragment γ. Let
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ǫ ∈ χ(γ) with α ∈ χ+(ǫ) be the child fragment of γ that contains α (it holds
ǫ 6= δ). We distinguish two cases.
(1) γ⊳ is a transition. Then, t(γ) ∈ {P,B}, while t(γ) = B requires b(γ) = B⋄.
(2) γ⊳ is a place. Then, t(γ) ∈ {P,B}, while t(γ) = B requires b(γ) ∈ {B◦, L}.

We distinguish two cases (I) b(γ) = B◦ and (II) b(γ) = L.
(I) Let M1, M2 ∈ [N, Mi〉 be two markings with M1(γ⊳) > 1

and M2(γ⊲) > 1. Let σ1, σ2 be two firing sequences with
(N, M1)[σ1〉(N, M2)[σ2〉(N, Mo), such that σ2 does not contain
any transition that is part of γ. As fragment ǫ represents a path
from γ⊳ to γ⊲, σ1 might contain only transitions that are part of ǫ.
Then, it holds α⊳ ∈ σ1. Since α⊳ ≫ β⊳, also β⊳ ∈ σ1 (as β⊳ /∈ σ2).
Therefore, β ∈ χ+(ǫ), such that we arrive at a contradiction with
the definition of γ = lca(α, β).

(II) Let M1, M2 ∈ [N, Mi〉 be two markings as defined for the previous
case with M1(γ⊳) > 1 and M2(γ⊲) > 1. Consider the case of ǫ
having forward orientation, ℓ(ǫ) =⇒. Then, there are two firing
sequences σ1, σ2 with (N, M1)[σ1〉(N, M2)[σ2〉(N, Mo), such that
σ1 contains only transitions that are part of ǫ, whereas σ2 does
not contain any transition that is part of γ. Then, α⊳ might be
part of σ1. As β⊳ /∈ σ2, but α⊳ ≫ β⊳, we conclude β⊳ ∈ σ1.
Thus, β ∈ χ+(ǫ), again, we arrived at a contradiction with the
definition of γ = lca(α, β). Consider the case of ǫ having backward
orientation, ℓ(ǫ) =⇐. Then, there is a firing sequence σ3 with
(N, M1)[σ1〉(N, M2)[σ3〉(N, M1)[σ1〉(N, M2)[σ2〉(N, Mo), such that
σ3 contains solely transitions that are part of ǫ. Again, α⊳ can
be part of σ3. From β⊳ /∈ σ2 but α⊳ ≫ β⊳, it follows β⊳ ∈ σ1 or
β⊳ ∈ σ3. The latter would imply β ∈ χ+(ǫ) (a contradiction as
above), which leads to β⊳ ∈ σ1. In order to ensure α⊳ ≫ β⊳, every
firing sequence σ1 has to contain β⊳. Therefore, all children of
fragment γ that represent paths from γ⊳ to γ⊲, i.e., children with
forward orientation, have to contain β. As β can only be contained
in one child of fragment γ, there is actually only child with forward
orientation.

We summarise that b(γ) 6= B◦, while b(γ) = L implies that ∀ ϑ ∈ Θ [ β ∈
χ+(ϑ) ] with Θ = {ϑ ∈ χ(γ) | ℓ(ϑ) =⇒}.

For both cases, γ⊳ being a transition or a place, we see that fragment γ does
not satisfy the assumptions on a fragment ω ∈ (Π \ {β}) as stated above.
We now consider two cases, η = γ or γ is an ancestor of η. Due to t(δ) = P ,
the former yields a contradiction, as Π \ {β} = {γ, δ} and both fragments do
not satisfy our assumption. For γ being an ancestor for η, there is a fragment
κ, such that κ ∈ χ(γ) and η ∈ χ+(κ). Again, we distinguish two cases.
(1) κ⊳ is a transition. Then, t(κ) ∈ {P,B}, while t(κ) = B requires b(κ) = B⋄.
(2) κ⊳ is a place. Now, we distinguish the three possible types of fragments

for γ.
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(A) If t(γ) = P , without loss of generality, we assume γ⊳ and γ⊳ to be
places (the single places of their post-set or pre-set, respectively,
would be taken if γ⊳ or γ⊳ would be a transition). Let M1, M2 ∈
[N, Mi〉 be two markings with M1(γ⊳) > 1 and M2(γ⊲) > 1. Let
σ1, σ2 be two firing sequences with (N, M1)[σ1〉(N, M2)[σ2〉(N, Mo),
such that σ2 does not contain any transition that is part of γ. Due to
t(γ) = P , either κ⊲ F+ ǫ⊳ and ǫ⊲ ✟✟F+ κ⊳, or vice versa. In both cases,
α⊳ ≫ β⊳ requires that a firing sequence σ3 between two markings
M3, M4 ∈ [N, Mi〉 with M3(κ⊳) > 1 and M4(κ⊲) > 1 contains beta⊳.
That is due to firing sequences leading from M1 to M3, or from M4

to M2 that contains no transition of fragment κ, but transition α⊳.
(B) If b(γ) = L, we know that ∀ ϑ ∈ Θ [ β ∈ χ+(ϑ) ] with

Θ = {ϑ ∈ χ(γ) | ℓ(ϑ) =⇒}. As β can only be contained in
one child of fragment γ, i.e., fragment κ, we know that ℓ(κ) =⇒
and, in turn, ℓ(ǫ) =⇐. With M1, M2, σ1, and σ2 as defined for
the previous case, there might be firing sequences σ4, σ5 with
(N, M1)[σ1〉(N, M2)[σ4(N, M1)[σ5(N, M2)[σ2〉(N, Mo), such that σ4

contains α⊳. Since α⊳ ≫ β⊳, firing sequence σ1 or σ5 must contain
β⊳. As in the previous case, it follows that any firing sequence σ3

between two markings M3, M4 ∈ [N, Mi〉 with M3(κ⊳) > 1 and
M4(κ⊲) > 1 must contain beta⊳.

(C) If b(γ) = B⋄, then ǫ⊳ and κ⊳ are places in the post-set of transition
γ⊳ (γ is a transition bordered bond). Let M5, M6, M7 ∈ [N, Mi〉 be
markings with M5(κ⊳) > 1, M5(ǫ⊳) > 1, M6(κ⊳) > 1, M6(ǫ⊲) > 1,
M7(κ⊲) > 1, M7(ǫ⊲) > 1. Then any firing sequence from M5 to M6

might contain α⊳. Since α⊳ ≫ β⊳, again, all firing sequences from
M6 to M7 must contain β⊳.

For all three possible types of fragments for γ, we summarise that we
have to ensure that any firing sequence leading from a marking that
marks κ⊳ to a marking that marks κ⊲ must contain transition β⊳. Thus,
for κ⊳ being a place, we know that b(κ) 6= B◦, while b(κ) = L implies
that ∀ ϑ ∈ Θ [ β ∈ χ+(ϑ) ] with Θ = {ϑ ∈ χ(κ) | ℓ(ϑ) =⇒} (cf., the
argument for case 2, if ǫ would be an arbitrary child of κ).

For both cases, κ⊳ being a transition or a place, fragment κ does not satisfy the
assumptions on a fragment ω ∈ (Π \{β}) stated above. As this argument can
be applied to all fragments on the path πT (κ, η), we arrive at a contradiction
with our assumption.

⇐ Let ∀ ω ∈ (Π \ {β}) either t(ω) = P or b(ω) = B⋄, or if (b(ω) = L then
∀ ϑ ∈ (χ(ω) ∩ Π) [ ℓ(ϑ) =⇒ ])] with Θ = {ϑ ∈ χ(ω) | ℓ(ϑ) =⇒}. Assume
α⊳ 6≫ β⊳. With δ as defined above, one path πN (δ⊳, β⊳) is forwards conflict-
free, i.e, δ⊳ ≫ β⊳ according to Lemma 3. Regarding fragment η, we distinguish
two cases.
(1) η⊳ is a transition. Then, t(η) ∈ {P,B}, while t(η) = B requires b(η) = B⋄.

Both imply that one path πN (η⊳, δ⊳) is forwards conflict-free, i.e., η⊳ ≫ δ⊳.
With δ⊳ ≫ β⊳ we also get η⊳ ≫ β⊳.
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(2) η⊳ is a place. Then, t(η) ∈ {P,B}, while t(η) = B requires b(η) = L. For
t(η) = P , we get t ≫ δ⊳ for all t ∈ •η⊳. For t(η) = B, we have b(η) = L
and ∀ ϑ ∈ Θ [ β ∈ χ+(ϑ) ] with Θ = {ϑ ∈ χ(η) | ℓ(ϑ) =⇒}. As only one
child of fragment η can contain fragment β, i.e., fragment δ, we know
|Θ| = 1. That is, there is only one path from η⊳ to η⊲, represented by
fragment δ. Therefore, t ≫ δ⊳ for all t ∈ •η⊳. For both cases, t(η) = P
or t(η) = B, it also holds t ≫ β⊳ for all t ∈ •η⊳, since δ⊳ ≫ β⊳.

We summarize that for both cases 1 and 2, we derive either η⊳ ≫ β⊳, or
t ≫ β⊳ for all t ∈ •η⊳, respectively. Applying this argument to all fragments
on the path πT (γ, η) yields γ⊳ ≫ β⊳ or t ≫ β⊳ for all t ∈ •γ⊳, respectively.
Trivially, α⊳ ≫ γ⊳ if γ⊳ is a transition or α⊳ ≫ t for all t ∈ •γ⊳ if γ⊳ is a place,
due to γ being an ancestor of α. Thus, α⊳ ≫ β⊳, which is a contradiction
with our assumption of α⊳ 6≫ β⊳. ⊓⊔

We illustrate both propositions using our example from Fig. 4(a). For instance,
transitions B and E are in strict order, B  E, as the LCA of the trivial
fragments that have B and E as entries is the polygon fragment P2, cf., Fig. 4(b)
and Fig. 6. Here, the order value for the child fragment of P2 containing B is
lower than the one for the child fragment that contains E, while the path from the
root of the tree P1 to P2, i.e., πT (P1, P2), does not contain any loop fragment.
It also holds D + E for transitions D and E due to the LCA being fragment B3
in Fig. 4(b) or B◦1 in Fig. 6, respectively. The fragment B◦1 is a place bordered
bond and, again, the path πT (P1, B◦1) does not contain any loop fragments.
Transitions B and C, in turn, are an example for observation concurrency, B||C,
as their LCA is fragment B2 in Fig. 4(b). This fragment corresponds to the loop
type fragment L1 in Fig. 6. Derivation of the co-occurrence is illustrated using
transitions B and C. We see that the path from the respective LCA (i.e., B2
in Fig. 4(b), L1 in Fig. 6) to the trivial fragments having B and C as entries
contains solely polygon fragments (P4 and P5, respectively). However, the LCA
itself is a loop fragment, such that the orientation of its child fragments P4 and
P5 needs to be considered. There is only one child with forward orientation,
namely P4. It contains transition B. Therefore, we derive C ≫ B, but B 6≫ C
according to Proposition 2.

Using these propositions, computation of the causal behavioural profile for a
pair of transitions in a sound free-choice WF-system is very efficient.

Corollary 2. The following problem can be solved in linear time.
Given a sound free-choice WF-system (N, Mi) and its WF-tree TN , to compute
the causal behavioural profile for a pair of transitions (a, b) if b is not contained
in any rigid fragment.

Proof. Let a and b be two transitions and β be a trivial fragment of TN with
b = β⊳. Each of the behavioural relations, cf., propositions 1 and 2, requires
analysis of fragments on a subpath from the root of TN to β. The analysis of
a single fragment is performed in constant time. In the worst case, the length
of the subpath is linear in size to the number of fragments in TN . Finally, the
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number of fragments in TN is linear to the number of flow relations in the WF-
system [20,26,27]. ⊓⊔

5.2 Computation for Rigid Fragments

Given the WF-tree, the computation of the causal behavioural profile for two
transitions a and b of a WF-system as introduced above assumes that there is no
rigid fragment on the path from the root of the tree to b. If b is part of a rigid
fragment, derivation of the behavioural relations is more costly.

In [12], we introduced a computation of the (non-causal) behavioural profile
for all transitions in O(n3) time for sound free-choice WF-systems with n as the
number of nodes. This approach, however, has the drawback that the behavioural
profile cannot be calculated for a single pair of transitions, but solely for the
Cartesian product of transitions leading to increased computational complexity.
For the problem of this paper, this implies computational overhead as various
transitions are irrelevant for consistency analysis. Not in all cases, such irrelevant
transitions might be removed in a pre-processing step without changing semantics.

While for the behavioural profile computation in polynomial time complexity
is possible for sound free-choice WF-systems, the co-occurrence relation of the
causal behavioural profile imposes serious challenges. In the following, we show
how this relation can be derived efficiently for three subclasses, namely sound
workflow T- and S-systems, and sound free-choice WF-systems that are acyclic.

Lemma 4. For a sound workflow T-system holds, all pairs of transitions are in
the co-occurrence relation.

Proof. Let (N, Mi) be a sound workflow T-system. Let i• = {ti} be the initial
transition (there is only one due to the structure of T-systems). For any transition
t ∈ T any path πN (ti, t) is forwards conflict-free. Thus, ti ≫ t (Lemma 3).
Consequently, all firing sequences starting with ti imply the occurrence of every
t ∈ T . Due to soundness, such firing sequences lead to the final marking Mo. Thus,
all firing sequences σ with (N, Mi)[σ〉(N, Mo) contain all transitions t ∈ T . ⊓⊔

Regarding our example in Fig. 4(a), we see that Lemma 4 suffices to derive the
co-occurrence relation for all pairs of transitions that can not be treated according
to Proposition 2 introduced before as they are part of a rigid fragment. The
subnet represented by fragment R1 in Fig. 4(b) and Fig. 6 is a T-Net, such that
all transitions inside are pairwise co-occurring (e.g., F ≫ J and J ≫ F ). This
knowledge, in turn, is also used to derive co-occurrence for pairs of transitions, in
which one transition is outside the rigid. For instance, we already know D ≫ K,
as the trivial fragment having transition K as entry is directly contained in
fragment P1 (Proposition 2 can be applied to decide co-occurrence for D and K).
However, K is also the exit of the rigid fragment R1, such that it is co-occurring
to all transitions inside the R1. Thus, it follows that also D is co-occurring to all
these transitions, e.g., D ≫ H.

For sound workflow S-systems, the co-occurrence relation can be traced back
to the notion of dominators and post-dominators known from graph theory. For
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a WF-net N = (P, T, F ), i and o as its initial and final place, and two nodes
x, y ∈ X, x is a dominator of y, iff for all paths πN (i, y) it holds x ∈ πN (i, y). x
is a post-dominator of y, iff for all paths πN (y, o) it holds x ∈ πN (y, o).

Lemma 5. For two transitions x and y of a sound workflow S-system holds,
x ≫ y, iff y is dominator or post-dominator of x.

Proof. Let (N, Mi) be a sound workflow S-system and x, y ∈ T two transitions.
In a workflow S-system, every reachable marking M ∈ [N, Mi〉 marks exactly
one place, as only i is marked initially and for all transitions t ∈ T we know
| • t| = 1 = |t • |. Therefore, for every firing sequence σ = t1, . . . , tn we know that
there is a path πN (t1, tn) containing all transitions of σ in the respective order.
⇒ Let y be a dominator or a post-dominator of x and assume x 6≫ y. If y is a

dominator of x, then y ∈ πN (i, x) for every path πN (i, x). Thus, any firing
sequence σ with (N, Mi)[σ〉(N, M1) with (N, M1)[x〉 is required to contain y,
i.e., x ≫ y. If y is a post-dominator of x, the argument can be turned around
for all paths πN (x, o).

⇐ Let x ≫ y and assume that y is neither a dominator nor a post-dominator of x.
x ≫ y implies that any firing sequence σ with x ∈ σ and (N, Mi)[σ〉(N, Mo)
contains y as well. Thus, all paths πN (i, o) that contain x also contain y, i.e,
y is a dominator (if y F+ x) or post-dominator (if x F+ y) of x. ⊓⊔

For the more generic case of sound free-choice WF-systems that are acyclic, the
co-occurrence relation can be traced back to the exclusiveness relation. Note that
it is easy to see that two transitions that are exclusive to each other are not
co-occurring. Therefore, this case is not considered in the following lemma.

Lemma 6. In a sound free-choice WF-system holds, two transitions x and y
that are not exclusive (x�+y), while y is not part of a control flow cycle (y ✟✟F+ y)
are co-occurring, if and only if, all transitions exclusive to y are exclusive to x.

Proof. Let (N, Mi) be a sound WF-system and x, y ∈ T two transitions with
x�+y, and y ✟✟F+ y. We need the following implications for free-choice sound
WF-systems that have been proved in [12].
◦ Strict order x y implies x F+ y and x ✟✟F+ y.
◦ Reverse strict order x −1 y implies y F+ x and y ✟✟F+ x.
◦ Observation concurrency x||y implies either y F+ x and y F+ x, or there is

a marking reachable from the initial marking that enables both transitions.
(⇐) Let t + y ⇒ t + x for all transitions t ∈ T and assume x 6≫ y. The relations

of the behavioural profile partition the set T × T . As we also know x�+y we
distinguish three cases of how x and y might be related according to the
profile.
(x y) We know x F+ y and x ✟✟F+ y, such that there is a path πN (x, y).

If any path πN (x, y) is forwards conflict-free, this yields x ≫ y according
to Lemma 3, a contradiction with our assumption. If there is no path
πN (x, y) that is forwards conflict-free, there is a p ∈ P with p ∈ πN (x, y)
for some πN (x, y), such that |p • | > 1. If y ∈ p•, we know that there
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is another transition ty ∈ p• with ty + y due to free-choiceness of the
net and y ✟✟F+ y. From x F+ ty, we get x�+ty (cf., Lemma 3 in [12]), a
contradiction. If y 6∈ p•, let t1 ∈ p• be a transition. We know x F+ t1
and, therefore, x�+t1. As y + t1 would imply x + t1, we derive y�+t1. Thus,
it holds either t1  y, t1  

−1 y, or t1||y.
(t1  

−1 y) We know y F+ t1 and t1 ✟✟F+ y. As p is in πN (x, y), we have
p F+ y. Thus, there must be a transition t2 ∈ p• with t2 F+ y. From
y F+ t1, we get y F+ p1 for some p1 ∈ •t1. Due to the free-choiceness
of the net, t1 and t2 share all places in their preset, such that also
p1 F+ y, which yields a contradiction with y ✟✟F+ y.

(t1||y) We know either y F+ t1 and t1 F+ y, or there is a marking that
enables both y and t1. The former is not in line with the assumption of
y ✟✟F+ y. The latter is not possible either: let (N, M)[y〉 and (N, M)[t1〉
for some M ∈ [N, Mi〉. Due to p F+ y either also p ∈ •y or the path
implies a firing sequence (N, M)[σ〉(N, M2) (property of sound free-
choice systems), such that all places of the preset of y are marked at
least twice. In both cases, the safeness property that holds for sound
free-choice systems would be violated.

Therefore, it holds t1  y for all t1 ∈ p• for some p ∈ P and πN (x, y)
with p ∈ πN (x, y) and |p • | > 1. Thus, it also holds t1 F+ y and y ✟✟F+ t1
for all these transitions t1. Now, either one path πN (t1, y) is forwards
conflict-free, which yields t1 ≫ y according to Lemma 3, or there is a
place p2 ∈ P with p2 ∈ πN (t1, y) for some πN (t1, y), such that |p2 • | > 1.
In this case, the argument for p can be applied recursively for p2, as for
all transitions t2 ∈ p2• it holds t2 F+ y. Note that the recursive step is
only initiated, if the respective place has not been visited before (which
might be the case due to control flow cycles). Consequently, we arrive
at t1 ≫ y for all transitions t1 ∈ p• for some p ∈ P and πN (x, y) with
p ∈ πN (x, y) and |p • | > 1. Therefore, we deduce x ≫ y, a contradiction.

(x −1 y) For the sake of completeness, we show how the argument for the
previous case of x  y is turned around for this case. From x  −1 y
we know y F+ x and x ✟✟F+ y, such that there is a path πN (y, x). If any
path πN (y, x) is backwards conflict-free, this yields x ≫ y according
to Lemma 3, a contradiction with our assumption. If there is no path
πN (y, x) that is backwards conflict-free, there is a p ∈ P with p ∈ πN (y, x)
for some πN (y, x), such that | • p| > 1. If y ∈ •p, we know that there
is another transition ty ∈ •p with ty + y due to free-choiceness of the
net and y ✟✟F+ y. From ty F+ x, we get ty�+x (cf., Lemma 3 in [12]), a
contradiction. If y 6∈ •p, let t1 ∈ •p be a transition. We know t1 F+ x
and, therefore, t1�+x. As t1 + y would imply t1 + x, we derive t1�+y. Thus,
it holds either y  t1, y  −1 t1, or y||t1.
(y  −1 t1) We know t1 F+ y and y ✟✟F+ t1. As p is in πN (y, x), we have

y F+ p. From t1 F+ y, we know that there must be a place p2 ∈ t1•
with p2 F+ y. As p = p2 would lead to a contradiction with y ✟✟F+ y, it
holds p 6= p2. For the same reason, we have p✟✟F+ y and p✟✟F+ p2. From
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p2 F+ y and y F+ p we get p2 F+ p. Assume a marking M ∈ [N, Mi〉
that is reached via firing of t1, i.e., M(p) > 0 and M(p2) > 0. Due
to the free-choiceness and soundness of the net, the path πN (p2, p)
implies the existence of a respective firing sequence. As p ✟✟F+ y and
p ✟✟F+ p2, this firing sequence can lead to a marking M2 ∈ [N, Mi〉
with M(p2) > 1, a contradiction with the safeness property of sound
free-choice WF-systems.

(t1||y) We know either y F+ t1 and t1 F+ y, or there is a marking that
enables both y and t1. The former is not in line with the assumption of
y ✟✟F+ y. The latter is not possible either: let (N, M)[y〉 and (N, M)[t1〉
for some M ∈ [N, Mi〉. Due to y F+ p either also y ∈ •p or the path
implies a firing sequence (N, M)[σ〉(N, M2) (property of sound free-
choice systems), such that the place p is marked at least twice. In
both cases, the safeness property that holds for sound free-choice
systems would be violated.

Therefore, it holds y  t1 for all t1 ∈ •p for some p ∈ P and πN (y, x)
with p ∈ πN (y, x) and | • p| > 1. Thus, it also holds y F+ t1 and t1 ✟✟F+ y
for all these transitions t1. Now, either one path πN (y, t1) is backwards
conflict-free, which yields t1 ≫ y according to Lemma 3, or there is a
place p2 ∈ P with p2 ∈ πN (y, t1) for some πN (y, t1), such that | • p2| > 1.
In this case, the argument for p can be applied recursively for p2, as for
all transitions t2 ∈ •p2 it holds y F+ t1. Note that the recursive step is
only initiated, if the respective place has not been visited before (which
might be the case due to control flow cycles). Consequently, we arrive
at t1 ≫ y for all transitions t1 ∈ •p for some p ∈ P and πN (y, x) with
p ∈ πN (y, x) and | • p| > 1. Therefore, we deduce x ≫ y, a contradiction.

(x||y) We know either x F+ y and y F+ x, or there is a marking that enables
both x and y. Again, the former is not in line with the assumption of
y ✟✟F+ y. Now, we consider two cases, whether or nor there is a path
πN (i, y) that is forwards conflict-free. If so, it holds i ≫ y, i.e., all firing
sequences starting in Mi and leading to Mo contain transition y, such
that the assumption of x 6≫ y is violated. If not, there is a p ∈ P with
p ∈ πN (i, y) for some πN (i, y), such that |p • | > 1. For such a place p,
we prove two properties.
1. If p F+ x, then for all t1 ∈ p• it holds t1 ✟✟F+ y ⇒ t1 ✟✟F+ x. Assume

that this implication does not hold, i.e., there is a t1 ∈ p• with
t1 ✟✟F+ y and t1 F+ x. From p F+ y we know that there must be
a t2 ∈ p• with t2 = y or t2 F+ y. The former leads to t1 + y due
to y ✟✟F+ y. Therefore, it holds t1 + x, yielding a contradiction with
t1 F+ x. In case of t2 F+ y, we know y ✟✟F+ p from y ✟✟F+ y. Further
on, y ✟✟F+ p implies y ✟✟F+ t1. Thus, either y + t1 or y||t1. The latter
implies the existence of a marking M ∈ [N, Mi〉 with (N, M)[y〉 and
(N, M)[t1〉. Due to p F+ y this would violate the safeness property
of sound free-choice systems. Thus, y + t1 and, therefore, x + t1, a
contradiction with t1 F+ x.
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2. If p ✟✟F+ x, then for all t1 ∈ p• it holds t1 F+ y. Assume that this is
not the case, i.e., there is a t1 ∈ p• with t1 ✟✟F+ y. From y ✟✟F+ y we get
y ✟✟F+ p and, therefore, y ✟✟F+ t1. As for the previous property, y||t1
would violate safeness of the system. Thus, y + t1. From p ✟✟F+ x, we
get t1 ✟✟F+ x, while x ✟✟F+ t1 holds as well in order to satisfy x ✟✟F+ y.
Thus, either t1 + x or t1||x. There is a marking M ∈ [N, Mi〉 with
(N, M)[y〉 and (N, M)[x〉, hence, there is also a marking M ∈ [N, Mi〉
with (N, M)[t1〉 and (N, M)[x〉, as p F+ y and t1 ∈ p•. Thus, it holds
t1||x, which yields a contradiction as t1 + y requires t1 + x.

Based thereon, we conclude the following for all conflicts that might lead
to y not being part of a firing sequence starting in Mi and leading to
Mo. That is, we consider all places p on a path πN (i, y) with |p • | > 1|.
If p F+ x, the first property ensures that if y will not be part of the
firing sequence due to firing of t1 ∈ p• with t1 ✟✟F+ y, x cannot be part
either, that is, t1 ✟✟F+ x holds true. We also know that x and y are enabled
concurrently in some marking. Thus, once there is a conflict at place
p on a path πN (i, y) and p ✟✟F+ x, it has to be ensured that y is fired
eventually. Here, the second property guarantees t1 F+ y for all t1 ∈ p•.
That, in turn, implies t2 ≫ t1 for all t2 ∈ •p and, as the property holds
for all respective places p, also t2 ≫ y. Consequently, it holds x ≫ y, a
contradiction with our assumption.

(⇒) Let x ≫ y and assume that there is a transition t ∈ T with t + y and
t�+x. Due to t�+x, there is a firing sequence σ with (N, Mi)[σ〉(N, Mo) that
contains both transitions, t and x. From x ≫ y, we know that also y ∈ σ.
Thus, x, y, t ∈ σ is a contradiction with the assumption of t + y. ⊓⊔

Based thereon, computation of the causal behavioural profile can be done effi-
ciently for sound workflow T- and S-systems and sound free-choice WF-systems
that are acyclic.

Corollary 3. The following problem can be solved in O(n3) time with n as the
number of nodes of the system. For a sound WF-system that is a T- or S-system,
or free-choice and acyclic, to compute the causal behavioural profile for a pair of
transitions.

Proof. Given any sound free-choice WF-system, the relations of the behavioural
profile can be computed in O(n3) time [12] (T- and S-systems are free-choice). The
co-occurrence relation for the causal profile is set directly in case of a T-system
(cf., Lemma 4). In case of an S-system, dominators and post-dominators are
determined in linear time [29]. Based thereon, co-occurrence is decided based on
Lemma 5. For the case of acyclic free-choice WF-systems, co-occurrence is traced
back to exclusiveness according to Lemma 6. That requires an iteration over
the Cartesian product of transitions, while for each pair all other transitions are
analysed, which yields a time complexity of O(n3). Thus, overall time complexity
is O(n3) with n as the number of nodes of the system. ⊓⊔
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5.3 Implementation & Experimental Results

In order to validate our approach of deriving behavioural characteristics, we
implemented the computation of the causal behavioural profiles based on WF-
trees and conducted an experiment using the SAP reference model [30]. This
reference model describes the functionality of the SAP R/3 system and comprises
737 EPC models. From these models, we selected those that are non-trivial (more
than one element), syntactically correct, free of deadlocks or livelocks (cf., [31]),
and have unambiguous instantiation semantics (cf., [32]). We also normalised
multiple start and end events, and replaced OR-split and OR-join connectors
with AND connectors (which does not impact on the behavioural profile, but on
the causal behavioural profile). For 493 EPC models, these pre-processing steps
led to a model that could be transformed into a sound free-choice WF-system
following on common EPC formalisations (eg., [8]).

R
2
 = 0,97

R
2
 = 0,96

R
2
 = 0,97

0

20

40

60

80

100

120

140

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Number of EPC Model Elements

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
m

s
)

BP - Net BP - Tree CBP RG

BP - Net (Pol.) BP - Tree (Pol.) CBP (Pol.) RG (Exp.)

R
2 

= 0,76

Fig. 8. Computation time relative to the size of the model
(Java implementation, Core 2 Duo, 1.2 GHz, 4 GB RAM).

In our experiment,
we computed the (non-
causal and causal) be-
havioural profiles for all
transitions of all 493
WF-systems separately.
We grouped the models
according to their size,
i.e., the number of EPC
nodes (the WF-systems
are larger in size). Fig. 8
shows the average com-
putation time for each
model group in three ex-
periment runs. First, we
computed the behavioural profile using the approach introduced in [12] (BP-Net).
Second, we derived the same profile using the WF-trees as introduced in this
paper (BP-Tree). Third, we computed the causal behavioural profile (including
co-occurrence) using WF-trees (CBP). Note that two WF-systems contained a
rigid fragment. Both could be mapped to an S-system and, therefore, be handled
as introduced in Section 5.2. To illustrate the extent to which the models of
our collection suffer from the state explosion problem [33], Fig. 8 also shows the
average computation time for a naive creation of the reachability graph (RG).
While all reachability graphs are finite (due to soundness of the WF-systems),
computation takes up to tens of seconds. For all four computations, Fig. 8 also
depicts the polynomial (or exponential for RG) least squares regression.

We see that the usage of WF-trees as introduced in this paper, speeds
up the computation of the behavioural profile significantly compared to the
existing approach. In addition, the overhead that results from our extension
of the behavioural profile yielding the causal behavioural profile is negligible.
Moreover, any trace equivalence based consistency metric would have to explore
the state space and, therefore, deal with the same computational complexity as
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the creation of the reachability graphs. Despite the availability of state space
reduction techniques, this issue it seems questionable, whether such a metric
could be applied for real-world process models.

6 Related Work

Clearly, our work relates to other behavioural models that have been defined for
Petri nets. While we discussed causal behavioural profiles in the light of relations
proposed for workflow mining [14], the well-known concurrency relation [15], and
Petri net unfoldings [16,17] already in Section 3.3, their relation to common
notions of behavioural equivalence deserves further explanation.

When applied in the context of model refinement and adaptation, the
multitude of equivalence criteria from the linear time – branching time spec-
trum [34,5,35] has three major drawbacks. First and foremost, these notions yield
a true or false answer, which has been criticised in [36]. Such notions cannot
be applied to assess the amount of potential behavioural deviation. Second, it
is well-known that interleaving equivalences are not invariant under forgetful
refinements of activities [37], i.e., projection of activities. However, our initial
example showed that projections are a substantial part of refining and adapting
a process model towards a workflow model. These phenomena, in turn, can be
quantified using the causal behavioural profile. Moreover, the large body of work
on equivalence-preserving refinements for Petri nets, refer to [38] for a thorough
survey, illustrates that common notions of equivalence are preserved solely under
a dedicated set of refinement operators. Similarly, work on net morphisms [39]
and behaviour inheritance [40,41] that any extension of a net has to be done in
a structured manner in order to preserve common equivalences. Third, notions
of behavioural equivalence are exponential in computation, which precludes an
application for large scale industrial process models. As discussed in Section 3.3,
our consistency notion based on causal behavioural profiles is weaker than trace
equivalence in order to compensate for computational efficiency.

Further on, the degree to which causal behavioural profiles of two related Petri
nets are preserved can be used as a behavioural similarity measure. Therefore,
work on causal footprints as a behavioural abstraction for determining the
similarity between process models [42] or on a trace-based similarity metric for
process mining [36] is also related. Refer to [43] for further pointers to notions of
behavioural similarity.

Related work also includes further applications of the tree-based decomposition
for behavioural models. For instance, such techniques have been applied for model
transformation [19], process comparison [44], or model abstraction [21].

7 Conclusions

In this paper, we have addressed the problem of finding a behavioural consistency
notion that is weaker than existing notions of behavioural equivalence, but can
be computed efficiently. Our contribution is the definition of a causal behavioural
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profile that captures essential behavioural characteristics of a process. Further on,
we showed the efficient computation of these profile for sound free-choice workflow
systems using structural decomposition techniques under the assumption that
unstructured net fragments are acyclic or can be traced back to S- or T-nets. Note
that this assumption still allows the system to be cyclic, either in a structured way
(bond loop fragment) or in an unstructured way (rigid fragment that is a cyclic
S-net). We demonstrated the efficiency by presenting experimental results from a
prototypical implementation. The low polynomial complexity of our algorithms
opens reasoning on behavioural consistency to industrial applications where trace
equivalence does not scale.

In future research, we aim at techniques for computing causal behavioural
profiles for a broader class of behavioural models, that is, systems that do not meet
our assumptions on free-choiceness, soundness, and the characteristics of rigid
fragments. We also want to exploit further applications of the WF-trees. While
we addressed the suitability of our consistency metric in a recent survey, further
empirical investigations on the human perception of behavioural consistency are
needed and will be tackled in future work.
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